matmul_mkldnn_op.cc 25.9 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16
#include <tuple>
17 18 19

using dnnl::memory;
using dnnl::primitive;
20 21 22 23
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::framework::vectorize;
using paddle::platform::GetMKLDNNFormat;
24
using paddle::platform::MKLDNNFormatForSize;
25 26 27 28 29 30
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;

namespace {
31

32 33
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
34
static Tensor FoldOuterDims(const Tensor& input) {
35 36 37 38 39 40 41 42 43 44 45 46
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
47 48 49
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
50 51 52 53
  if (input_dims.size() != 3) {
    return *input;
  }

54
  Tensor output;
55 56
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

57
  auto output_dims = vectorize(output.dims());
58

59 60 61
  memory::data_type input_type =
      paddle::framework::ToMKLDNNDataType(input->type());
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
62
      output_dims, input->type(), input_type, dev_ctx.GetEngine());
63 64

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
65 66
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
67 68 69 70 71
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

72 73
  paddle::platform::RecordEvent record_reorder(
      "int_reorder", paddle::platform::EventRole::kUniqueOp);
74

75
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
76 77 78 79 80 81 82 83
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : paddle::framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : paddle::framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
108
class MatMulMKLDNNHandler
109
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
110
 public:
111
  MatMulMKLDNNHandler(const mkldnn::engine engine,
112 113
                      paddle::platform::Place cpu_place, Tensor* x,
                      bool trans_x, Tensor* y, bool trans_y, Tensor* out,
114
                      float scale)
115 116
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    auto mat_dim_x =
        paddle::operators::math::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y =
        paddle::operators::math::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

141 142 143
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
144 145 146 147 148

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
149
  }
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  // Constructor for FWD MatMul
  MatMulMKLDNNHandler(const mkldnn::engine engine, const ExecutionContext& ctx,
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
            engine, ctx.GetPlace()),
        matmul_dims_(GetMatmulDims(ctx)) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto x_md = memory::desc(matmul_dims_.x_dims, MKLDNNGetDataType<XT>(),
                             matmul_dims_.x_strides);
    auto y_md = memory::desc(matmul_dims_.y_dims, MKLDNNGetDataType<YT>(),
                             matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims, MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(attr, x_md, y_md, out_md);
  }
171 172

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
173
    const YT* input_data = input->data<YT>();
174
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
175
                                            to_void_cast<YT>(input_data));
176 177
  }

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
      matmul_p->execute(astream, {
                                     {MKLDNN_ARG_SRC, *src_memory_p},
                                     {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                     {MKLDNN_ARG_DST, *dst_memory_p},
                                 });
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
214

215 216 217 218
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
219 220
  }

221 222 223 224 225 226 227 228 229 230 231 232
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
233 234 235 236
  }

 private:
  struct MatMulDims {
237 238
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
239 240
  };

241 242
  std::pair<paddle::operators::math::MatDescriptor, memory::dims>
  GetInputDimsAndStrides(const ExecutionContext& ctx, std::string input_name) {
243 244 245 246 247
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
B
baoachun 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
      auto it_zero = std::find(shape.begin(), shape.end(), 0);
      if (it_zero != shape.end()) {
        for (uint64_t i = 0; i < shape.size(); i++) {
          if (shape[i] == 0) {
            PADDLE_ENFORCE_LT(
                i, input_dims.size(),
                paddle::platform::errors::InvalidArgument(
                    "The index of 0 in fused_reshape_%s ",
                    "should be less than output dim size, ",
                    "but the index is %d and output dim size is %d", input_name,
                    i, input_dims.size()));
            shape[i] = input_dims.at(i);
          }
        }
      }

      // if "-1" is present then one of reshape dims must be infered
      auto it_negative = std::find(shape.begin(), shape.end(), -1);
      if (it_negative != shape.end()) {
        int64_t dim_product = 1;
        for (int i = 0; i < input_dims.size(); i++) {
          dim_product *= input_dims.at(i);
        }

        int64_t shape_product = std::accumulate(shape.begin(), shape.end(), -1,
                                                std::multiplies<int>());
        int index = std::distance(shape.begin(), it_negative);
        shape[index] = dim_product / shape_product;
      }

278 279 280 281 282
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
283 284 285 286
    paddle::operators::math::MatDescriptor mat_dim =
        paddle::operators::math::CreateMatrixDescriptor(
            MatrixDimsFromVector(new_dims), 0,
            ctx.Attr<bool>("transpose_" + input_name));
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

306 307 308 309 310 311 312 313 314
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

315 316 317 318 319
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

320 321 322 323 324 325 326
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

327
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
328
    paddle::operators::math::MatDescriptor mat_dim_x;
329 330
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
331
    paddle::operators::math::MatDescriptor mat_dim_y;
332 333
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
334

335 336
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
337
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
338
                      paddle::platform::errors::InvalidArgument(
339 340 341
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

342
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
343 344 345
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
346 347

    batch_size_ = 1;
348
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
349 350 351
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
352 353 354
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
355
    }
356 357 358
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
359

360 361 362
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
363 364

    // Translate transA and transB
365 366 367 368 369 370
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
371 372
    memory::dims out_strides = memory::dims{M * N, N, 1};

373
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
374 375

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
376 377
  }

378 379 380 381
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
382

383 384 385 386
    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
387

388 389 390 391 392 393 394
    PADDLE_ENFORCE_EQ(in_rank, axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank, axis_size));
395

396 397 398
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
399

400 401 402 403 404
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
405 406
  }

407 408 409 410 411
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
412
    }
413 414
  }

415
  uint16_t GetBatchSize(void) const { return batch_size_; }
416

417 418
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
419 420 421
  }

 private:
422
  MatMulDims matmul_dims_;
423 424 425 426
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
427 428
};

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor* x, const paddle::operators::math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(Tensor* x, Tensor* y, Tensor* out,
                                         bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x =
      paddle::operators::math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y =
      paddle::operators::math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
477 478
  }

479 480
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
481 482
}

483
// Choose appropriate Handler instances based on inferred
484 485 486 487
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
488
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
489 490
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
491 492 493 494 495 496 497
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();

498
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
499 500
    MatMulMKLDNNHandler<XT, YT, float>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
501
  } else if (is_bfloat16) {
502 503 504
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(dev_ctx.GetEngine(),
                                                            ctx, alpha)
        .Execute(x, y, out);
505
  } else if (fuse_relu) {
506 507
    MatMulMKLDNNHandler<XT, YT, uint8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
508
  } else {
509 510
    MatMulMKLDNNHandler<XT, YT, int8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
511 512 513 514
  }
}

template <typename T>
515
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
516
 public:
517
  void Compute(const ExecutionContext& ctx) const override {
518
    if (ctx.HasAttr("head_number")) {
519 520
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
521
          paddle::platform::errors::Unimplemented(
522
              "oneDNN matmul doesn't support multiple heads. Expected "
523 524
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
525 526 527 528
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
529

530 531 532 533 534
}  // anonymous namespace

namespace paddle {
namespace operators {

535
template <typename T>
536 537 538 539 540
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"), 1,
        platform::errors::Unimplemented(
541
            "oneDNN matmul doesn't support multiple heads. Expected "
542 543
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
544
  }
545 546
  RunKernel(ctx);
}
547

548 549 550 551 552
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
    const mkldnn::engine& engine, Tensor* x, bool trans_x,
    bool is_fold_init_dims_x, Tensor* y, bool trans_y, bool is_fold_init_dims_y,
553
    Tensor* out) const {
554 555 556 557 558 559 560 561 562 563 564 565 566 567
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
568

569
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
570

571 572 573
  MatMulMKLDNNHandler<T, T, T> handler(engine, ctx.GetPlace(), &x_combined,
                                       trans_x, &y_combined, trans_y, out,
                                       alpha);
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
619
    }
620
  }
621

622 623 624 625 626
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
627
    }
628
  }
629

630 631
  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true, &dout,
632
                            true, false, dx);
633
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
634
                            true, false, dy);
635 636
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
637
                            &dout, true, false, dx);
638
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
639
                            &dout, false, true, dy);
640 641
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
642
                            &y, false, true, dx);
643
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
644
                            false, true, dy);
645 646
  } else {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
647
                            &y, true, false, dx);
648
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true, &dout,
649
                            false, true, dy);
650 651 652 653 654 655
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
656
    }
657 658 659 660 661
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
662 663
    }
  }
664 665 666 667
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
668

669 670 671 672 673
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
674 675 676
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulMKLDNNKernel<int8_t>, MatMulMKLDNNKernel<uint8_t>);
677 678 679 680

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);