matmul_mkldnn_op.cc 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using platform::to_void_cast;
using framework::DataLayout;
using platform::GetMKLDNNFormat;
using platform::MKLDNNGetDataType;
using platform::MKLDNNDeviceContext;
using framework::ExecutionContext;
using Tensor = framework::Tensor;

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static framework::DDim RowMatrixDimsFromVector(const framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static framework::DDim ColumnMatrixDimsFromVector(
    const framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
class MatMulFactory {
 public:
  void CreateAndExecute(const ExecutionContext& ctx) {
    SetDNNLEngine(ctx);
    if (IsInitialized()) {
      UpdateDataPointers(ctx);
      Execute();
      SetOutputFormat(ctx);
      return;
    }
    CreateMemories(ctx);
    CreatePrimitive(ctx);
    Execute();
    SetOutputFormat(ctx);
    SetInitialized();
  }

 private:
  struct MatMulDims {
    const memory::dim BS, M, N, K;
  };

  void SetDNNLEngine(const ExecutionContext& ctx) {
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    engine_ = dev_ctx.GetEngine();
  }

  template <typename T>
  dnnl::memory CreateMemory(const memory::dims& dims,
                            const memory::dims& strides, const T* data) {
    auto md = memory::desc(dims, MKLDNNGetDataType<T>(), strides);
    return dnnl::memory(md, engine_, to_void_cast(data));
  }

  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
    auto mat_dim_x = math::CreateMatrixDescriptor(
        RowMatrixDimsFromVector(ctx.Input<Tensor>("X")->dims()), 0,
        ctx.Attr<bool>("transpose_X"));
    auto mat_dim_y = math::CreateMatrixDescriptor(
        ColumnMatrixDimsFromVector(ctx.Input<Tensor>("Y")->dims()), 0,
        ctx.Attr<bool>("transpose_Y"));

    const auto x_bs = mat_dim_x.batch_size_;
    const auto y_bs = mat_dim_y.batch_size_;
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
                      platform::errors::InvalidArgument(
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

    // Store 1 if both batches are zero, otherwise save the nonzero batch
    const memory::dim BS = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
    return {BS, M, N, K};
  }

  void CreateMemories(const ExecutionContext& ctx) {
    auto matmul_dims = GetMatmulDims(ctx);
    auto BS = matmul_dims.BS;
    auto M = matmul_dims.M;
    auto N = matmul_dims.N;
    auto K = matmul_dims.K;
    bool x_trans = ctx.Attr<bool>("transpose_X");
    bool y_trans = ctx.Attr<bool>("transpose_Y");

    typedef memory::dims dims;
    dims x_dims = {BS, M, K};
    dims y_dims = {BS, K, N};
    dims out_dims = {BS, M, N};

    // Translate transA and transB
    dims x_strides = !x_trans ? dims{M * K, K, 1} : dims{M * K, 1, M};
    dims y_strides = !y_trans ? dims{N * K, N, 1} : dims{N * K, 1, K};
    dims out_strides = {M * N, N, 1};

    x_mem_ =
        CreateMemory<XT>(x_dims, x_strides, ctx.Input<Tensor>("X")->data<XT>());
    y_mem_ =
        CreateMemory<YT>(y_dims, y_strides, ctx.Input<Tensor>("Y")->data<YT>());
    out_mem_ = CreateMemory<OT>(
        out_dims, out_strides,
        ctx.Output<Tensor>("Out")->mutable_data<OT>(ctx.GetPlace()));
  }

  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  void CreatePrimitive(const ExecutionContext& ctx) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto matmul_d = dnnl::matmul::desc(x_mem_.get_desc(), y_mem_.get_desc(),
                                       out_mem_.get_desc());
    auto matmul_pd = dnnl::matmul::primitive_desc(matmul_d, attr, engine_);
    matmul_prim_ = dnnl::matmul(matmul_pd);
  }

  void Execute() {
    dnnl::stream stream(engine_);
    matmul_prim_.execute(stream, {
                                     {MKLDNN_ARG_SRC, x_mem_},
                                     {MKLDNN_ARG_WEIGHTS, y_mem_},
                                     {MKLDNN_ARG_DST, out_mem_},
                                 });
    stream.wait();
  }

  void SetOutputFormat(const ExecutionContext& ctx) {
    using platform::MKLDNNFormatForSize;
    auto* out = ctx.Output<Tensor>("Out");
    auto format =
        MKLDNNFormatForSize(out->dims().size(), MKLDNNMemoryFormat::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  void UpdateDataPointers(const ExecutionContext& ctx) {
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    x_mem_.set_data_handle(to_void_cast(x->data<XT>()));
    y_mem_.set_data_handle(to_void_cast(y->data<YT>()));
    out_mem_.set_data_handle(out->mutable_data<OT>(ctx.GetPlace()));
  }

  // If initialized, x memory should've been already initialized
  bool IsInitialized() { return initialized_; }

  void SetInitialized() { initialized_ = true; }

 private:
  dnnl::engine engine_;
  dnnl::memory x_mem_;
  dnnl::memory y_mem_;
  dnnl::memory out_mem_;
  dnnl::matmul matmul_prim_;
  bool initialized_ = false;
};

template <typename XT, typename YT, typename OT>
static std::shared_ptr<MatMulFactory<XT, YT, OT>> GetPrimitiveFactory(
    const ExecutionContext& ctx) {
  const auto x_dims = framework::vectorize<int>(ctx.Input<Tensor>("X")->dims());
  const auto y_dims = framework::vectorize<int>(ctx.Input<Tensor>("Y")->dims());
  const auto& out_name = ctx.OutputName("Out");
  const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();

  const std::string key =
      platform::CreateKey(platform::ThreadIDasStr(), x_dims, y_dims, out_name);

  auto factory =
      std::static_pointer_cast<MatMulFactory<XT, YT, OT>>(dev_ctx.GetBlob(key));
  if (factory == nullptr) {
    factory = std::make_shared<MatMulFactory<XT, YT, OT>>();
    dev_ctx.SetBlob(key, factory);
  }

  return factory;
}

template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}
// Choose appropriate primitive factory implementation based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
  if (!is_int8 || force_fp32_output) {
    GetPrimitiveFactory<XT, YT, float>(ctx)->CreateAndExecute(ctx);
  } else if (fuse_relu) {
    GetPrimitiveFactory<XT, YT, uint8_t>(ctx)->CreateAndExecute(ctx);
  } else {
    GetPrimitiveFactory<XT, YT, int8_t>(ctx)->CreateAndExecute(ctx);
  }
}

template <typename T>
class DNNLMatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(ctx.Attr<int>("head_number"), 1,
                        platform::errors::Unimplemented(
                            "DNNL matmul doesn't support multiple heads."));
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::DNNLMatMulKernel<float>, ops::DNNLMatMulKernel<int8_t>,
                   ops::DNNLMatMulKernel<uint8_t>);