matmul_mkldnn_op.cc 24.8 KB
Newer Older
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16
#include <tuple>
17 18 19

using dnnl::memory;
using dnnl::primitive;
20 21 22 23
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::framework::vectorize;
using paddle::platform::GetMKLDNNFormat;
24
using paddle::platform::MKLDNNFormatForSize;
25 26 27 28 29 30
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;

namespace {
31

32 33
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
34
static Tensor FoldOuterDims(const Tensor& input) {
35 36 37 38 39 40 41 42 43 44 45 46
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
47 48 49
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext& dev_ctx,
                                   const Tensor* input) {
  auto input_dims = vectorize(input->dims());
50 51 52 53
  if (input_dims.size() != 3) {
    return *input;
  }

54
  Tensor output;
55 56
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

57
  auto output_dims = vectorize(output.dims());
58

59 60 61 62 63 64 65
  memory::data_type input_type =
      paddle::framework::ToMKLDNNDataType(input->type());
  std::string key = paddle::platform::CreateKey(
      dev_ctx, input_dims, input->format(), input->format(), input_type);
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
      output_dims, input->type(), input_type, dev_ctx, dev_ctx.GetEngine(),
      key);
66 67

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
68 69
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
70 71 72 73 74
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

75 76
  paddle::platform::RecordEvent record_reorder(
      "int_reorder", paddle::platform::EventRole::kUniqueOp);
77

78
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
79 80 81 82 83 84 85 86
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}

// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim& x_dim) {
  return x_dim.size() > 1 ? x_dim : paddle::framework::make_ddim({1, x_dim[0]});
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim& y_dim) {
  return y_dim.size() > 1 ? y_dim : paddle::framework::make_ddim({y_dim[0], 1});
}

template <typename XT, typename YT, typename OT>
111
class MatMulMKLDNNHandler
112
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
113
 public:
114
  MatMulMKLDNNHandler(const mkldnn::engine engine,
115 116
                      paddle::platform::Place cpu_place, Tensor* x,
                      bool trans_x, Tensor* y, bool trans_y, Tensor* out,
117
                      float scale)
118 119
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    auto mat_dim_x =
        paddle::operators::math::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y =
        paddle::operators::math::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

144 145 146
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);
147 148 149 150 151

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
152
  }
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
  // Constructor for FWD MatMul
  MatMulMKLDNNHandler(const mkldnn::engine engine, const ExecutionContext& ctx,
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
            engine, ctx.GetPlace()),
        matmul_dims_(GetMatmulDims(ctx)) {
    dnnl::primitive_attr attr;
    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      constexpr unsigned tensor_wide_scale = 0;
      attr.set_output_scales(tensor_wide_scale, {scale_out});
    }

    auto x_md = memory::desc(matmul_dims_.x_dims, MKLDNNGetDataType<XT>(),
                             matmul_dims_.x_strides);
    auto y_md = memory::desc(matmul_dims_.y_dims, MKLDNNGetDataType<YT>(),
                             matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims, MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(attr, x_md, y_md, out_md);
  }
174 175

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
176
    const YT* input_data = input->data<YT>();
177
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
178
                                            to_void_cast<YT>(input_data));
179 180
  }

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 public:
  void Execute(const paddle::framework::Tensor* x,
               const paddle::framework::Tensor* y,
               paddle::framework::Tensor* out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void* x_ptr = src_memory_p->get_data_handle();
    void* y_ptr = weights_memory_p->get_data_handle();
    void* out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
      matmul_p->execute(astream, {
                                     {MKLDNN_ARG_SRC, *src_memory_p},
                                     {MKLDNN_ARG_WEIGHTS, *weights_memory_p},
                                     {MKLDNN_ARG_DST, *dst_memory_p},
                                 });
      x_ptr = static_cast<char*>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char*>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char*>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();
217

218 219 220 221
    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
222 223
  }

224 225 226 227 228 229 230 231 232 233 234 235
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      paddle::framework::Tensor* output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT* ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
236 237 238 239
  }

 private:
  struct MatMulDims {
240 241
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
242 243
  };

244 245
  std::pair<paddle::operators::math::MatDescriptor, memory::dims>
  GetInputDimsAndStrides(const ExecutionContext& ctx, std::string input_name) {
246 247 248 249 250 251 252 253 254 255
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto& MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
256 257 258 259
    paddle::operators::math::MatDescriptor mat_dim =
        paddle::operators::math::CreateMatrixDescriptor(
            MatrixDimsFromVector(new_dims), 0,
            ctx.Attr<bool>("transpose_" + input_name));
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

279 280 281 282 283 284 285 286 287
  float ComputeOutputScale(const ExecutionContext& ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

288 289 290 291 292
  bool IsInputFused(const ExecutionContext& ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

293 294 295 296 297 298 299
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

300
  MatMulDims GetMatmulDims(const ExecutionContext& ctx) {
301
    paddle::operators::math::MatDescriptor mat_dim_x;
302 303
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
304
    paddle::operators::math::MatDescriptor mat_dim_y;
305 306
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");
307

308 309
    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
310
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs, false,
311
                      paddle::platform::errors::InvalidArgument(
312 313 314
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

315
    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
316 317 318
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;
319 320

    batch_size_ = 1;
321
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
322 323 324
      auto& x_dims = ctx.Input<Tensor>("X")->dims();
      auto& y_dims = ctx.Input<Tensor>("Y")->dims();
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
325 326 327
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
328
    }
329 330 331
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};
332

333 334 335
    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);
336 337

    // Translate transA and transB
338 339 340 341 342 343
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
344 345
    memory::dims out_strides = memory::dims{M * N, N, 1};

346
    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);
347 348

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
349 350
  }

351 352 353 354
  std::vector<int64_t> Transpose(const std::vector<int64_t>& x,
                                 const std::vector<int>& axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();
355

356 357 358 359
    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));
360

361 362 363 364 365 366 367
    PADDLE_ENFORCE_EQ(in_rank, axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank, axis_size));
368

369 370 371
    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()), axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));
372

373 374 375 376 377
    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
378 379
  }

380 381 382 383 384
  void CorrectStridesWhenFloatOutputFused(const ExecutionContext& ctx,
                                          const memory::dim N, memory::dim b,
                                          memory::dims* out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
385
    }
386 387
  }

388
  uint16_t GetBatchSize(void) const { return batch_size_; }
389

390 391
  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
392 393 394
  }

 private:
395
  MatMulDims matmul_dims_;
396 397 398 399
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
400 401
};

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor* x, const paddle::operators::math::MatDescriptor& descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(Tensor* x, Tensor* y, Tensor* out,
                                         bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x =
      paddle::operators::math::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y =
      paddle::operators::math::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_, mat_dim_y.width_});
450 451
  }

452 453
  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
454 455
}

456
// Choose appropriate Handler instances based on inferred
457 458 459 460
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext& ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
461
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
462 463
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
  constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
464 465 466 467 468 469 470
  auto* x = ctx.Input<Tensor>("X");
  auto* y = ctx.Input<Tensor>("Y");
  auto* out = ctx.Output<Tensor>("Out");
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  const auto& dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();

471
  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
472 473
    MatMulMKLDNNHandler<XT, YT, float>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
474
  } else if (is_bfloat16) {
475 476 477
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(dev_ctx.GetEngine(),
                                                            ctx, alpha)
        .Execute(x, y, out);
478
  } else if (fuse_relu) {
479 480
    MatMulMKLDNNHandler<XT, YT, uint8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
481
  } else {
482 483
    MatMulMKLDNNHandler<XT, YT, int8_t>(dev_ctx.GetEngine(), ctx, alpha)
        .Execute(x, y, out);
484 485 486 487
  }
}

template <typename T>
488
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
489
 public:
490
  void Compute(const ExecutionContext& ctx) const override {
491
    if (ctx.HasAttr("head_number")) {
492 493
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"), 1,
494
          paddle::platform::errors::Unimplemented(
495
              "oneDNN matmul doesn't support multiple heads. Expected "
496 497
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
498 499 500 501
    }
    ExecuteMatMul<T, T>(ctx);
  }
};
502

503 504 505 506 507
}  // anonymous namespace

namespace paddle {
namespace operators {

508
template <typename T>
509 510 511 512 513
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext& ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"), 1,
        platform::errors::Unimplemented(
514
            "oneDNN matmul doesn't support multiple heads. Expected "
515 516
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
517
  }
518 519
  RunKernel(ctx);
}
520

521 522 523 524 525
template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext& ctx, const MKLDNNDeviceContext& dev_ctx,
    const mkldnn::engine& engine, Tensor* x, bool trans_x,
    bool is_fold_init_dims_x, Tensor* y, bool trans_y, bool is_fold_init_dims_y,
526
    Tensor* out) const {
527 528 529 530 531 532 533 534 535 536 537 538 539 540
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }
541

542
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
543

544 545 546
  MatMulMKLDNNHandler<T, T, T> handler(engine, ctx.GetPlace(), &x_combined,
                                       trans_x, &y_combined, trans_y, out,
                                       alpha);
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext& ctx) const {
  const auto& dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto& onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
592
    }
593
  }
594

595 596 597 598 599
  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
600
    }
601
  }
602

603 604
  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, true, true, &dout,
605
                            true, false, dx);
606
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
607
                            true, false, dy);
608 609
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &y, false, false,
610
                            &dout, true, false, dx);
611
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, false, false,
612
                            &dout, false, true, dy);
613 614
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
615
                            &y, false, true, dx);
616
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, true, true, &x,
617
                            false, true, dy);
618 619
  } else {
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &dout, false, false,
620
                            &y, true, false, dx);
621
    this->ExecuteMatMulGrad(ctx, dev_ctx, onednn_engine, &x, true, true, &dout,
622
                            false, true, dy);
623 624 625 626 627 628
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
629
    }
630 631 632 633 634
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
635 636
    }
  }
637 638 639 640
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;
641

642 643 644 645 646
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul, MKLDNN, ::paddle::platform::CPUPlace,
647 648 649
                   MatMulMKLDNNKernel<float>,
                   MatMulMKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulMKLDNNKernel<int8_t>, MatMulMKLDNNKernel<uint8_t>);
650 651 652 653

REGISTER_OP_KERNEL(matmul_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);