softmax_mkldnn_op.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
16
#include "paddle/fluid/platform/mkldnn_reuse.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

25 26 27 28 29 30
using dnnl::memory;  // Note: paddle has also "memory" namespace
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::softmax_backward;
using dnnl::softmax_forward;
using dnnl::stream;
J
Jacek Czaja 已提交
31 32
using platform::to_void_cast;

33
template <typename T>
34 35 36
class SoftmaxMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                      mkldnn::softmax_backward> {
J
Jacek Czaja 已提交
37
 public:
38 39 40 41
  SoftmaxMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx,
                       const mkldnn::engine mkldnn_engine,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const int axis,
42
                       const std::string uniq_name, bool is_inplaced)
43 44
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
45
            dev_ctx, mkldnn_engine, cpu_place,
46
            // Softmax may be inplace then uniq_name is no longer unique
47 48 49 50 51 52
            is_inplaced ? platform::CreateKey(
                              dev_ctx, framework::vectorize(input->dims()),
                              axis, uniq_name)
                        : platform::CreateKey(
                              dev_ctx, framework::vectorize(input->dims()),
                              uniq_name)) {
53 54 55 56 57 58 59 60 61 62 63 64 65
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          input->dims(), output->dims(),
          platform::errors::InvalidArgument(
              "The shape of input and output tensor must be identical."));

      auto softmax_tz = framework::vectorize(input->dims());
      auto md = memory::desc(softmax_tz, platform::MKLDNNGetDataType<T>(),
                             input->format());

      this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md,
                                              axis);
    }
66
  }
J
Jacek Czaja 已提交
67

68 69 70 71 72
  SoftmaxMKLDNNHandler(const framework::ExecutionContext& ctx,
                       const MKLDNNDeviceContext& dev_ctx,
                       platform::Place cpu_place, const Tensor* out,
                       const Tensor* out_grad, Tensor* in_x_grad,
                       const std::string& unique_name)
73 74 75
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            platform::CreateKey(dev_ctx, framework::vectorize(out->dims()),
                                unique_name)) {
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
          out_grad->dims(), in_x_grad->dims(),
          platform::errors::InvalidArgument("The shape of softmax_grad's input "
                                            "and output must be identical."));

      auto dims = out_grad->dims();  // input and output share the same shape
      const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
      auto softmax_tz = framework::vectorize<int64_t>(dims);

      auto data_softmax_md = MKLDNNMemDesc(
          softmax_tz, platform::MKLDNNGetDataType<T>(), out->format());
      auto diff_softmax_md = MKLDNNMemDesc(
          softmax_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());

      this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
                                               axis);
    }
96
  }
J
Jacek Czaja 已提交
97
};
98 99 100 101 102 103

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
104 105
    const auto& mkldnn_engine = dev_ctx.GetEngine();

106 107
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
108
    bool is_inplaced = input->IsSharedBufferWith(*output);
F
fengjiayi 已提交
109

110
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), input->dims().size());
111

112
    SoftmaxMKLDNNHandler<T> handler(dev_ctx, mkldnn_engine, ctx.GetPlace(),
113 114
                                    input, output, axis, ctx.OutputName("Out"),
                                    is_inplaced);
115

116
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
117
    // For Inplace src and and dst are the same memory object
118 119
    auto softmax_dst_memory_p =
        is_inplaced ? softmax_src_memory_p : handler.AcquireDstMemory(output);
120

121 122
    auto softmax_p = handler.AcquireForwardPrimitive();

123
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
124 125
    softmax_p->execute(astream, {{DNNL_ARG_SRC, *softmax_src_memory_p},
                                 {DNNL_ARG_DST, *softmax_dst_memory_p}});
A
Adam 已提交
126
    astream.wait();
J
Jacek Czaja 已提交
127 128 129

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
130
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
131
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
132 133
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
134
    }
135 136 137 138

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
139 140 141
  }
};

J
Jacek Czaja 已提交
142 143 144 145
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
146 147 148
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL SoftmaxGrad must use CPUPlace"));
J
Jacek Czaja 已提交
149 150
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* output = ctx.Input<Tensor>("Out");
151 152
    auto* out_grad = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* in_x_grad = ctx.template Output<Tensor>(framework::GradVarName("X"));
F
fengjiayi 已提交
153

154 155
    SoftmaxMKLDNNHandler<T> handler(ctx, dev_ctx, ctx.GetPlace(), output,
                                    out_grad, in_x_grad, ctx.InputName("Out"));
156

157
    auto dst_memory_p = handler.AcquireDstMemory(output);
158 159
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(in_x_grad);
J
Jacek Czaja 已提交
160

A
Adam 已提交
161
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
162

163
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
A
Adam 已提交
164 165 166 167 168
    softmax_bwd_p->execute(astream,
                           {{MKLDNN_ARG_DST, *dst_memory_p},
                            {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                            {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
    astream.wait();
169

170 171
    in_x_grad->set_layout(framework::DataLayout::kMKLDNN);
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
J
Jacek Czaja 已提交
172 173
  }
};
174 175 176 177 178 179
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
180 181
                   ops::SoftmaxMKLDNNKernel<float>,
                   ops::SoftmaxMKLDNNKernel<paddle::platform::bfloat16>);
J
Jacek Czaja 已提交
182 183
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);