nn.py 46.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

from __future__ import print_function

import numpy as np
import six
import os
import inspect
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
26
from ... import unique_name
27 28 29
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.fluid.data_feeder import check_type, check_dtype, convert_dtype
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
30
from paddle.fluid.layers import slice, reshape
31

32 33 34 35 36
__all__ = [
    'fused_elemwise_activation',
    'sequence_topk_avg_pooling',
    'var_conv_2d',
    'match_matrix_tensor',
37
    'tree_conv',
38
    'fused_embedding_seq_pool',
39
    'multiclass_nms2',
A
Aurelius84 已提交
40
    'search_pyramid_hash',
Z
zhoushiyu 已提交
41
    'shuffle_batch',
42
    'tdm_child',
43
    'tdm_sampler',
44
]
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108


def fused_elemwise_activation(x,
                              y,
                              functor_list,
                              axis=-1,
                              scale=0.0,
                              save_intermediate_out=True):
    """
    **Fused elementwise_add/mul and activation layers**

    This function computes an elementwise_add/mul cooperated with an activation.

    .. math::

        out = Unary(Binary(x, y))

    or

    .. math::

        out = Binary(x, Unary(y))

    Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
    `elementwise_add`, `elementwise_mul`.

    Args:
        x (Variable): left operation of the binary operator.
        y (Variable): right operator of the binary operator.
        functor_list (list of str): types of operator which will be executed
            by this layer. For example, ['elementwise_add', 'relu']
            (out = elementwise_add(x, relu(y))),
            or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
        axis (int32, default -1): axis of elementwise op.
        scale (float32, default 0): parameter of scale op.
        save_intermediate_out (bool, default True): whether to save the
            intermediate result, Unary(y) or Binary(x, y).

    Returns:
        Variable: The computation result.
    """
    if isinstance(functor_list, str):
        functor_list = functor_list.split(',')

    if not isinstance(functor_list, list) or len(functor_list) != 2:
        raise ValueError(
            'functor_list should be a list of str, and the length should be 2.')

    helper = LayerHelper('fused_elemwise_activation', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fused_elemwise_activation',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out,
                 'IntermediateOut': intermediate_out},
        attrs={
            'axis': axis,
            'scale': scale,
            'save_intermediate_out': save_intermediate_out,
            'functor_list': functor_list
        })
    return out
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124


def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
T
tianshuo78520a 已提交
125
    and :attr:`col` are 1-level LodTensor. The convolution operation is same as conv2d layer with 
126 127 128
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
C
Chengmo 已提交
129

130 131 132 133 134 135
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
C
Chengmo 已提交
136

137 138 139 140 141
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
T
tianshuo78520a 已提交
142 143 144
        input (Variable): The input should be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row should be 1-level LodTensor to provide height information.
        col (Variable): The col should be 1-level LodTensor to provide width information.
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = contrib.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
    it will average the topk features as an output feature for each channel of every 
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height 
    and width information for :attr:`input` tensor. If feature size of input sequence is less 
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i] 
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
T
tianshuo78520a 已提交
334
        row (Variable): The row should be 1-level LodTensor to provide the height information
335
                        of the input tensor data.
T
tianshuo78520a 已提交
336
        col (Variable): The col should be 1-level LodTensor to provide the width information
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out
376 377 378 379 380 381 382 383 384 385 386 387 388


def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
C
Chengmo 已提交
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506


def fused_embedding_seq_pool(input,
                             size,
                             is_sparse=False,
                             padding_idx=None,
                             combiner='sum',
                             param_attr=None,
                             dtype='float32'):
    """
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
            data_t = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype)
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx
        })
    return out
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521


def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
C
Chengmo 已提交
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
564
                         the confidences after the filtering detections based
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections. 
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] 
        or A 2-D LoDTensor with shape [No, 10] represents the detections. 
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3, 
        x4, y4]. No is the total number of detections. 
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
        Index: Only return when return_index is True. A 2-D LoDTensor with 
        shape [No, 1] represents the selected index which type is Integer. 
        The index is the absolute value cross batches. No is the same number 
        as Out. If the index is used to gather other attribute such as age, 
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where 
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654


def search_pyramid_hash(input,
                        num_emb,
                        space_len,
                        pyramid_layer,
                        rand_len,
                        drop_out_percent,
                        is_training,
                        use_filter,
                        white_list_len,
                        black_list_len,
                        seed,
                        lr,
                        param_attr=None,
                        param_attr_wl=None,
                        param_attr_bl=None,
                        name=None,
C
Chengmo 已提交
655
                        distribute_update_vars=None,
A
Aurelius84 已提交
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
                        dtype='float32'):
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
682 683
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training. 
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
    w = helper.create_parameter(
        attr=param_attr, shape=w_shape, dtype=dtype, is_bias=False)
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
        white_list = helper.create_parameter(
            attr=param_attr_wl, shape=wl_shape, dtype=dtype, is_bias=False)
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
        black_list = helper.create_parameter(
            attr=param_attr_bl, shape=bl_shape, dtype=dtype, is_bias=False)
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
                    "Pyramid Hash layer didn't have parameter {}".format(param))
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='pyramid_hash',
        inputs=input_vars,
        outputs={"Out": res,
                 "X_Temp_Out": x_temp_out,
                 'DropPos': drop_pos},
        attrs={
            'num_emb': num_emb,
            'space_len': space_len,
            'pyramid_layer': pyramid_layer,
            'rand_len': rand_len,
            'drop_out_percent': drop_out_percent,
            'is_training': is_training,
            'use_filter': use_filter,
            'white_list_len': white_list_len,
            'black_list_len': black_list_len,
            'seed': seed,
            'lr': lr,
C
Chengmo 已提交
749
            'distribute_update_vars': distribute_update_vars_str
A
Aurelius84 已提交
750 751 752
        })

    return res
Z
zhoushiyu 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[-1, 4])
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
            persistable=True)
    helper.append_op(
        type='shuffle_batch',
        inputs={'X': x,
                'Seed': seed},
        outputs={'Out': out,
                 'ShuffleIdx': shuffle_idx,
                 'SeedOut': seed},
        attrs=op_attrs)
    return out
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901


def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
     According to the input node_id on the given tree, return the corresponding child node_id and 
      whether child is a leaf node by leaf_mask value.

    .. code-block:: text
        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2
          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]

    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
            has shape(node_nums, 3 + child_nums), dtype support int32/int64. 
            The dimension[1] of tdm-tree-info contains the following: 
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given. 
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable). 
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
     """
    helper = LayerHelper("tdm_child", **locals())
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_child')
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    tree_info = helper.create_parameter(
        attr=helper.param_attr,
        shape=[node_nums, 3 + child_nums],
        dtype=dtype,
        default_initializer=Constant(0))
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

    helper.append_op(
        type='tdm_child',
        inputs={'X': x,
                'TreeInfo': tree_info},
        outputs={'Child': child,
                 'LeafMask': leaf_mask},
        attrs={'child_nums': child_nums,
               'dtype': c_dtype},
        stop_gradient=True)
    return (child, leaf_mask)
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110


def tdm_sampler(x,
                neg_samples_num_list,
                layer_node_num_list,
                leaf_node_num,
                tree_travel_attr=None,
                tree_layer_attr=None,
                output_positive=True,
                output_list=True,
                seed=0,
                tree_dtype='int32',
                dtype='int32'):
    """
    **Tdm Sampler**
    According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
            layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)

            x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
            neg_samples_num_list = [0, 0] # negative sample nums = 0
            layer_node_num_list = [2, 4]
            leaf_node_num = 4
            output_list = False

        we get:
            out = [[1, 3], [1, 4], [2, 5], [2, 6]]
            labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
            mask = [[1, 1], [1, 1], [1, 1], [1, 1]]

    Args:
        x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
        neg_samples_num_list (list(int)): Number of negative samples per layer.
        layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
        leaf_node_num (int): Number of leaf nodes.
        tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should 
            has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
        tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should 
            has shape (node_num, 1), dtype support int32/int64.
        output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
        output_list (bool): Whether to divide the output into layers and organize it into list format.
        seed (int): The number of random seed.
        tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
        dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks) 

    Returns:
        tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
            result  will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1, 
            and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the 
            sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1. 
            If output_list = True, the result will organize into list format specified by layer information.
            Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
        layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)

        neg_samples_num_list = [0, 0] # negative sample nums = 0
        layer_node_num_list = [2, 4] #two layer (exclude root node)
        leaf_node_num = 4

        travel_array = np.array(travel_list)
        layer_array = np.array(layer_list_flat)

        sample, label, mask = fluid.contrib.layers.tdm_sampler(
            x,
            neg_samples_num_list,
            layer_node_num_list,
            leaf_node_num,
            tree_travel_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    travel_array)),
            tree_layer_attr=fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    layer_array)),
            output_positive=True,
            output_list=True,
            seed=0,
            tree_dtype='int32')

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")

        exe.run(feed={"x":xx})

    """
    helper = LayerHelper("tdm_sampler", **locals())
    check_dtype(tree_dtype, 'tree_dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_sampler')
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_sampler')
    c_dtype = convert_np_dtype_to_dtype_(dtype)

    if len(neg_samples_num_list) != len(layer_node_num_list):
        raise ValueError(
            "The shape of negative samples list must match the shape of layers. "
            "But received len of neg_samples_num_list: {},"
            "and len of layer_node_num_list: {}, please check your input.".
            format(len(neg_samples_num_list), len(layer_node_num_list)))
    assert leaf_node_num is not None, "leaf_node_num should not be None here."

    layer_nums = 0
    node_nums = 0
    tree_layer_offset_lod = [0]
    for layer_idx, layer_node_num in enumerate(layer_node_num_list):
        layer_nums += 1
        node_nums += layer_node_num
        tree_layer_offset_lod.append(node_nums)
        if neg_samples_num_list[layer_idx] >= layer_node_num_list[layer_idx]:
            raise ValueError(
                "The number of negative samples must be less than the number of nodes "
                "in the layer {}, But received negative nums {}, and num of node at layer {} "
                "is {}, please check your input.".format(
                    layer_idx, neg_samples_num_list[
                        layer_idx], layer_idx, layer_node_num_list[layer_idx]))
    assert leaf_node_num < node_nums, "leaf_node_num must be less than total node nums."

    travel_shape = [leaf_node_num, layer_nums]
    travel = helper.create_parameter(
        attr=tree_travel_attr,
        shape=travel_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0))

    layer_shape = [node_nums, 1]
    layer = helper.create_parameter(
        attr=tree_layer_attr,
        shape=layer_shape,
        dtype=tree_dtype,
        default_initializer=Constant(0))

    out = helper.create_variable_for_type_inference(dtype=dtype)
    out.stop_gradient = True

    labels = helper.create_variable_for_type_inference(dtype=dtype)
    labels.stop_gradient = True

    mask = helper.create_variable_for_type_inference(dtype=dtype)
    mask.stop_gradient = True

    helper.append_op(
        type='tdm_sampler',
        inputs={"X": x,
                "Travel": travel,
                "Layer": layer},
        outputs={'Out': out,
                 'Labels': labels,
                 'Mask': mask},
        attrs={
            'neg_samples_num_list': neg_samples_num_list,
            'output_positive': output_positive,
            'layer_offset_lod': tree_layer_offset_lod,
            'seed': seed,
            'dtype': c_dtype
        })

    if output_list:
        output_list = []
        labels_list = []
        mask_list = []
        start_offset = 0
        positive_flag = 1
        if not output_positive:
            positive_flag = 0

        for layer_sample_num in neg_samples_num_list:
            end_offset = start_offset + \
                layer_sample_num + positive_flag
            layer_samples = slice(
                out, axes=[1], starts=[start_offset], ends=[end_offset])
            layer_labels = slice(
                labels, axes=[1], starts=[start_offset], ends=[end_offset])
            layer_mask = slice(
                mask, axes=[1], starts=[start_offset], ends=[end_offset])

            layer_samples = reshape(layer_samples,
                                    [-1, layer_sample_num + positive_flag, 1])
            layer_samples.stop_gradient = True

            layer_labels = reshape(layer_labels,
                                   [-1, layer_sample_num + positive_flag, 1])
            layer_labels.stop_gradient = True

            layer_mask = reshape(layer_mask,
                                 [-1, layer_sample_num + positive_flag, 1])
            layer_mask.stop_gradient = True

            output_list.append(layer_samples)
            labels_list.append(layer_labels)
            mask_list.append(layer_mask)
            start_offset = end_offset

        out = output_list
        labels = labels_list
        mask = mask_list

    return (out, labels, mask)