nn.py 26.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

from __future__ import print_function

import numpy as np
import six
import os
import inspect
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.fluid.layers import utils
26

27 28 29 30 31
__all__ = [
    'fused_elemwise_activation',
    'sequence_topk_avg_pooling',
    'var_conv_2d',
    'match_matrix_tensor',
32
    'tree_conv',
33
    'fused_embedding_seq_pool',
34
    'multiclass_nms2',
35
]
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99


def fused_elemwise_activation(x,
                              y,
                              functor_list,
                              axis=-1,
                              scale=0.0,
                              save_intermediate_out=True):
    """
    **Fused elementwise_add/mul and activation layers**

    This function computes an elementwise_add/mul cooperated with an activation.

    .. math::

        out = Unary(Binary(x, y))

    or

    .. math::

        out = Binary(x, Unary(y))

    Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
    `elementwise_add`, `elementwise_mul`.

    Args:
        x (Variable): left operation of the binary operator.
        y (Variable): right operator of the binary operator.
        functor_list (list of str): types of operator which will be executed
            by this layer. For example, ['elementwise_add', 'relu']
            (out = elementwise_add(x, relu(y))),
            or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
        axis (int32, default -1): axis of elementwise op.
        scale (float32, default 0): parameter of scale op.
        save_intermediate_out (bool, default True): whether to save the
            intermediate result, Unary(y) or Binary(x, y).

    Returns:
        Variable: The computation result.
    """
    if isinstance(functor_list, str):
        functor_list = functor_list.split(',')

    if not isinstance(functor_list, list) or len(functor_list) != 2:
        raise ValueError(
            'functor_list should be a list of str, and the length should be 2.')

    helper = LayerHelper('fused_elemwise_activation', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fused_elemwise_activation',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out,
                 'IntermediateOut': intermediate_out},
        attrs={
            'axis': axis,
            'scale': scale,
            'save_intermediate_out': save_intermediate_out,
            'functor_list': functor_list
        })
    return out
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366


def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
    and :attr:`col` are 1-level LodTensor. The covolution operation is same as conv2d layer with 
    padding. Besides, input.dims[1] should be 1. 

    .. code-block:: text
            
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
            input is a lodTensor: 
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
            
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
                output.lod = [[90, 84]] # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
        input (Variable): The input shoud be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide height information.
        col (Variable): The col shoud be 1-level LodTensor to provide width information.
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.var_conv_2d(input=x_lod_tensor, 
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
    Then the semantic matching matrix of query A and title B is calculated by 
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W` 
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided, 
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
                x.lod =  [[2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
                out.lod =  [[12, 6]]   # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
            out, out_tmp = contrib.match_matrix_tensor(x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
    it will average the topk features as an output feature for each channel of every 
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height 
    and width information for :attr:`input` tensor. If feature size of input sequence is less 
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i] 
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
        row (Variable): The row shoud be 1-level LodTensor to provide the height information
                        of the input tensor data.
        col (Variable): The col shoud be 1-level LodTensor to provide the width information
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431


def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497


def fused_embedding_seq_pool(input,
                             size,
                             is_sparse=False,
                             padding_idx=None,
                             combiner='sum',
                             param_attr=None,
                             dtype='float32'):
    """
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
            data_t = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype)
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx
        })
    return out
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627


def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
        otherwise, a tuple with one Variable(Out) is returned. 
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections. 
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] 
        or A 2-D LoDTensor with shape [No, 10] represents the detections. 
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3, 
        x4, y4]. No is the total number of detections. 
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
        Index: Only return when return_index is True. A 2-D LoDTensor with 
        shape [No, 1] represents the selected index which type is Integer. 
        The index is the absolute value cross batches. No is the same number 
        as Out. If the index is used to gather other attribute such as age, 
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where 
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output