Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
ada787db
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ada787db
编写于
4月 09, 2020
作者:
C
Chengmo
提交者:
GitHub
4月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Cherry-pick tdm_sampler op in Contrib (#23598)
* cherry-pick tdm_sampler
上级
bda2cff3
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
968 addition
and
0 deletion
+968
-0
paddle/fluid/operators/tdm_sampler_op.cc
paddle/fluid/operators/tdm_sampler_op.cc
+137
-0
paddle/fluid/operators/tdm_sampler_op.h
paddle/fluid/operators/tdm_sampler_op.h
+329
-0
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+211
-0
python/paddle/fluid/tests/unittests/test_tdm_sampler_op.py
python/paddle/fluid/tests/unittests/test_tdm_sampler_op.py
+291
-0
未找到文件。
paddle/fluid/operators/tdm_sampler_op.cc
0 → 100644
浏览文件 @
ada787db
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/tdm_sampler_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sampler.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
class
TDMSamplerOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"X(Tensor), Input variable which"
"mapping the leaf node idx of tdm tree,"
"dtype support int32/int64"
);
AddInput
(
"Travel"
,
"Travel(Tensor), must has the same dtype with Layer"
"Contains path information of all leaf nodes to root node,"
" dtype support int32/64"
);
AddInput
(
"Layer"
,
"Layer(Tensor), must has the same dtype with Travel "
"Indicates which nodes are in each layer"
);
AddAttr
<
bool
>
(
"output_positive"
,
"output_positive(bool)"
"Whether positive samples are included in the output"
)
.
SetDefault
(
true
);
AddAttr
<
std
::
vector
<
int
>>
(
"neg_samples_num_list"
,
"neg_samples_num_list(python:list[int], C++:vector<int>)"
"The num of negative samples in each layer"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"layer_offset_lod"
,
"offset lod information of Layer"
)
.
SetDefault
({});
AddAttr
<
int
>
(
"seed"
,
"(int) The seed used in sampler. If it is 0, "
"the sampler will generate a seed randomly."
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"dtype"
,
"(int, default INT32) "
"Output data type."
)
.
SetDefault
(
2
);
AddOutput
(
"Out"
,
"Sampling result lodTensor, with shape [batch_size, layer_num, "
"neg_num_of_layer]"
);
AddOutput
(
"Labels"
,
"Labels of sampling result, has the same shape with Out."
"pos samples mapping value 1, neg sample mapping value 0"
)
.
AsDispensable
();
AddOutput
(
"Mask"
,
"Padding flag of Sampling result, if sampling res comes from padding,"
"it will be 0, else 1, lodTensor, with shape [batch_size, "
"layer_num, neg_num_of_layer]"
);
AddComment
(
R"DOC("
**TDM Sampler**
According to the input positive samples at leaf node, do negative sampling layer by layer on the given tree.")DOC"
);
}
};
class
TDMSamplerOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Input) of TdmSampler should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Travel"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Travel) of TdmSampler should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Layer"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Inputs(Layer) of TdmSampler should not be null."
));
auto
neg_samples_num_vec
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"neg_samples_num_list"
);
auto
output_positive_flag
=
ctx
->
Attrs
().
Get
<
bool
>
(
"output_positive"
);
int64_t
sample_res_length
=
0
;
for
(
auto
sample_nums
:
neg_samples_num_vec
)
{
sample_res_length
+=
sample_nums
+
(
int64_t
)
output_positive_flag
;
}
auto
input_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
ddim
=
framework
::
make_ddim
({
-
1
,
sample_res_length
});
if
(
ctx
->
IsRuntime
())
{
auto
output_dims
=
framework
::
vectorize
(
input_dims
);
auto
batch_size
=
output_dims
[
0
];
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
({
batch_size
,
sample_res_length
}));
ctx
->
SetOutputDim
(
"Labels"
,
framework
::
make_ddim
({
batch_size
,
sample_res_length
}));
ctx
->
SetOutputDim
(
"Mask"
,
framework
::
make_ddim
({
batch_size
,
sample_res_length
}));
}
else
{
ctx
->
SetOutputDim
(
"Out"
,
ddim
);
ctx
->
SetOutputDim
(
"Labels"
,
ddim
);
ctx
->
SetOutputDim
(
"Mask"
,
ddim
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
tdm_sampler
,
ops
::
TDMSamplerOp
,
ops
::
TDMSamplerOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
tdm_sampler
,
ops
::
TDMSamplerKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
TDMSamplerKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
,
ops
::
TDMSamplerKernel
<
paddle
::
platform
::
CPUPlace
,
int
>
,
ops
::
TDMSamplerKernel
<
paddle
::
platform
::
CPUPlace
,
int64_t
>
);
paddle/fluid/operators/tdm_sampler_op.h
0 → 100644
浏览文件 @
ada787db
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/sampler.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
Sampler
=
math
::
Sampler
;
using
DDim
=
framework
::
DDim
;
using
LoD
=
framework
::
LoD
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDAndOffset
=
std
::
pair
<
LoD
,
std
::
pair
<
size_t
,
size_t
>>
;
template
<
typename
T
,
typename
TreeT
=
int
,
typename
OutT
=
int
>
void
TDMSamplerInner
(
const
framework
::
ExecutionContext
&
context
,
const
LoDTensor
&
input_tensor
,
const
LoDTensor
&
travel_lod_tensor
,
const
LoDTensor
&
layer_lod_tensor
,
LoDTensor
*
out_tensor
,
LoDTensor
*
label_tensor
,
LoDTensor
*
mask_tensor
)
{
auto
neg_samples_num_vec
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"neg_samples_num_list"
);
auto
layer_offset_lod
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"layer_offset_lod"
);
auto
output_positive_flag
=
context
.
Attr
<
bool
>
(
"output_positive"
);
// get dimension
int
input_ids_num
=
input_tensor
.
numel
();
VLOG
(
3
)
<<
"TDM: input ids nums: "
<<
input_ids_num
;
auto
layer_nums
=
neg_samples_num_vec
.
size
();
VLOG
(
3
)
<<
"TDM: tree layer nums: "
<<
layer_nums
;
int
sample_res_length
=
0
;
for
(
size_t
layer_idx
=
0
;
layer_idx
<
layer_nums
;
++
layer_idx
)
{
sample_res_length
+=
(
neg_samples_num_vec
[
layer_idx
]
+
static_cast
<
int
>
(
output_positive_flag
));
}
VLOG
(
3
)
<<
"TDM: sample res length: "
<<
sample_res_length
;
auto
travel_dim
=
travel_lod_tensor
.
dims
();
auto
total_sample_nums
=
input_ids_num
*
sample_res_length
;
// get all data
auto
*
input_data
=
input_tensor
.
data
<
T
>
();
auto
*
travel_data
=
travel_lod_tensor
.
data
<
TreeT
>
();
auto
*
layer_data
=
layer_lod_tensor
.
data
<
TreeT
>
();
OutT
zero
=
0
;
OutT
one
=
1
;
std
::
vector
<
OutT
>
output_vec
(
total_sample_nums
,
zero
);
std
::
vector
<
OutT
>
label_vec
(
total_sample_nums
,
zero
);
std
::
vector
<
OutT
>
mask_vec
(
total_sample_nums
,
one
);
VLOG
(
3
)
<<
"End get input & output data"
;
// generate uniform sampler
auto
seed
=
context
.
Attr
<
int
>
(
"seed"
);
std
::
vector
<
Sampler
*>
sampler_vec
{};
for
(
size_t
layer_index
=
0
;
layer_index
<
layer_nums
;
layer_index
++
)
{
int
layer_node_nums
=
layer_offset_lod
[
layer_index
+
1
]
-
layer_offset_lod
[
layer_index
];
Sampler
*
sampler
=
new
math
::
UniformSampler
(
layer_node_nums
-
1
,
seed
);
sampler_vec
.
push_back
(
sampler
);
}
VLOG
(
3
)
<<
"TDM: get sampler "
;
for
(
int
i
=
0
;
i
<
input_ids_num
;
++
i
)
{
// find leaf node travel path
T
input_id
=
input_data
[
i
];
PADDLE_ENFORCE_LT
(
-
1
,
input_id
,
platform
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.tdm_sampler) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
travel_dim
[
0
],
input_id
));
PADDLE_ENFORCE_LT
(
input_id
,
travel_dim
[
0
],
platform
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.tdm_sampler) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
travel_dim
[
0
],
input_id
));
VLOG
(
3
)
<<
"TDM: input id: "
<<
input_id
;
int
start_offset
=
static_cast
<
int
>
(
input_id
*
layer_nums
);
VLOG
(
3
)
<<
"TDM: Start offset(input_id * layer_nums): "
<<
start_offset
;
// nce sample, layer by layer
int
offset
=
0
;
for
(
size_t
layer_idx
=
0
;
layer_idx
<
layer_nums
;
++
layer_idx
)
{
int
sample_num
=
neg_samples_num_vec
[
layer_idx
];
VLOG
(
3
)
<<
"TDM: Sample num: "
<<
sample_num
;
int
node_nums
=
layer_offset_lod
[
layer_idx
+
1
]
-
layer_offset_lod
[
layer_idx
];
VLOG
(
3
)
<<
"TDM: layer - "
<<
layer_idx
+
1
<<
" - has node_nums: "
<<
node_nums
;
PADDLE_ENFORCE_LE
(
sample_num
,
node_nums
-
1
,
platform
::
errors
::
InvalidArgument
(
"Neg sample nums id of OP(fluid.layers.tdm_sampler) at layer %ld "
"expected <= %ld - 1 (positive included), but got %ld. Please "
"check neg_samples_num_list."
,
layer_idx
,
node_nums
,
sample_num
));
int
node_id_min
=
layer_offset_lod
[
layer_idx
];
int
node_id_max
=
layer_offset_lod
[
layer_idx
+
1
];
OutT
positive_node_id
=
static_cast
<
OutT
>
(
travel_data
[
start_offset
+
layer_idx
]);
if
(
positive_node_id
==
0
)
{
// skip padding
VLOG
(
3
)
<<
"TDM: Skip padding "
;
for
(
int
sample_index
=
0
;
sample_index
<
sample_num
+
static_cast
<
int
>
(
output_positive_flag
);
sample_index
++
)
{
output_vec
[
i
*
sample_res_length
+
offset
]
=
0
;
label_vec
[
i
*
sample_res_length
+
offset
]
=
0
;
mask_vec
[
i
*
sample_res_length
+
offset
]
=
0
;
VLOG
(
3
)
<<
"TDM: Res append positive "
<<
output_vec
[
i
*
sample_res_length
+
offset
]
<<
" Label append positive "
<<
label_vec
[
i
*
sample_res_length
+
offset
]
<<
" Mask append value "
<<
mask_vec
[
i
*
sample_res_length
+
offset
];
offset
+=
1
;
}
continue
;
}
PADDLE_ENFORCE_LE
(
positive_node_id
,
node_id_max
,
platform
::
errors
::
InvalidArgument
(
"Positive node id of OP(fluid.layers.tdm_sampler) at layer %ld "
"expected >= %ld and <= %ld, but got %ld. Please check input "
"value."
,
layer_idx
,
node_id_min
,
node_id_max
,
positive_node_id
));
PADDLE_ENFORCE_LE
(
node_id_min
,
positive_node_id
,
platform
::
errors
::
InvalidArgument
(
"Positive node id of OP(fluid.layers.tdm_sampler) at layer %ld "
"expected >= %ld and <= %ld, but got %ld. Please check input "
"value."
,
layer_idx
,
node_id_min
,
node_id_max
,
positive_node_id
));
// If output positive, add itself
if
(
output_positive_flag
)
{
output_vec
[
i
*
sample_res_length
+
offset
]
=
positive_node_id
;
label_vec
[
i
*
sample_res_length
+
offset
]
=
1
;
mask_vec
[
i
*
sample_res_length
+
offset
]
=
1
;
VLOG
(
3
)
<<
"TDM: node id: "
<<
positive_node_id
<<
" Res append "
<<
output_vec
[
i
*
sample_res_length
+
offset
]
<<
" Label append "
<<
label_vec
[
i
*
sample_res_length
+
offset
]
<<
" Mask append "
<<
mask_vec
[
i
*
sample_res_length
+
offset
];
offset
+=
1
;
}
std
::
vector
<
int
>
sample_res_vec
{};
// Sampling at layer, until samples enough
for
(
int
sample_index
=
0
;
sample_index
<
sample_num
;
++
sample_index
)
{
// Avoid sampling to positive samples
int
sample_res
=
0
;
do
{
sample_res
=
sampler_vec
[
layer_idx
]
->
Sample
();
}
while
(
positive_node_id
==
layer_data
[
layer_offset_lod
[
layer_idx
]
+
sample_res
]
||
find
(
sample_res_vec
.
begin
(),
sample_res_vec
.
end
(),
sample_res
)
!=
sample_res_vec
.
end
());
sample_res_vec
.
push_back
(
sample_res
);
output_vec
[
i
*
sample_res_length
+
offset
]
=
static_cast
<
OutT
>
(
layer_data
[
layer_offset_lod
[
layer_idx
]
+
sample_res
]);
label_vec
[
i
*
sample_res_length
+
offset
]
=
0
;
mask_vec
[
i
*
sample_res_length
+
offset
]
=
1
;
VLOG
(
3
)
<<
"TDM: node id: "
<<
travel_data
[
start_offset
+
layer_idx
]
<<
" Res append negitive "
<<
output_vec
[
i
*
sample_res_length
+
offset
]
<<
" Label append negitive "
<<
label_vec
[
i
*
sample_res_length
+
offset
]
<<
" Mask append value "
<<
mask_vec
[
i
*
sample_res_length
+
offset
];
PADDLE_ENFORCE_LE
(
layer_data
[
layer_offset_lod
[
layer_idx
]
+
sample_res
],
node_id_max
,
platform
::
errors
::
InvalidArgument
(
"Negative node id of OP(fluid.layers.tdm_sampler) at layer %ld"
"expected >= %ld and <= %ld, but got %ld. Please check input "
"tdm tree structure and tdm travel info."
,
layer_idx
,
node_id_min
,
node_id_max
,
layer_data
[
layer_offset_lod
[
layer_idx
]
+
sample_res
]));
offset
+=
1
;
}
// end layer nce
}
// end one input nce
}
// end all input nce
auto
*
output_data
=
out_tensor
->
mutable_data
<
OutT
>
(
context
.
GetPlace
());
auto
*
label_data
=
label_tensor
->
mutable_data
<
OutT
>
(
context
.
GetPlace
());
auto
*
mask_data
=
mask_tensor
->
mutable_data
<
OutT
>
(
context
.
GetPlace
());
memcpy
(
output_data
,
&
output_vec
[
0
],
sizeof
(
OutT
)
*
total_sample_nums
);
memcpy
(
label_data
,
&
label_vec
[
0
],
sizeof
(
OutT
)
*
total_sample_nums
);
memcpy
(
mask_data
,
&
mask_vec
[
0
],
sizeof
(
OutT
)
*
total_sample_nums
);
for
(
size_t
layer_index
=
0
;
layer_index
<
layer_nums
;
layer_index
++
)
{
delete
sampler_vec
[
layer_index
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
TDMSamplerKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input_var
=
context
.
InputVar
(
"X"
);
auto
*
travel_var
=
context
.
InputVar
(
"Travel"
);
auto
*
layer_var
=
context
.
InputVar
(
"Layer"
);
// get all tensor
auto
&
input_tensor
=
input_var
->
Get
<
framework
::
LoDTensor
>
();
auto
&
travel_lod_tensor
=
travel_var
->
Get
<
framework
::
LoDTensor
>
();
auto
&
layer_lod_tensor
=
layer_var
->
Get
<
framework
::
LoDTensor
>
();
const
auto
&
input_type
=
input_tensor
.
type
();
bool
input_type_match
=
input_type
==
framework
::
proto
::
VarType
::
INT32
||
input_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
input_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
input_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
const
auto
&
travel_type
=
travel_lod_tensor
.
type
();
bool
travel_type_match
=
travel_type
==
framework
::
proto
::
VarType
::
INT32
||
travel_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
travel_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Travel) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
travel_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
const
auto
&
layer_type
=
layer_lod_tensor
.
type
();
bool
layer_type_match
=
layer_type
==
framework
::
proto
::
VarType
::
INT32
||
layer_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
layer_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Layer) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
layer_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
PADDLE_ENFORCE_EQ
(
travel_type
,
layer_type
,
platform
::
errors
::
InvalidArgument
(
"Input(Travel) must holds the same type with "
"Input(Layer), but Travel holds %s, and Layer holds %s"
,
paddle
::
framework
::
DataTypeToString
(
travel_type
),
paddle
::
framework
::
DataTypeToString
(
layer_type
)));
auto
*
out_var
=
context
.
OutputVar
(
"Out"
);
auto
*
label_var
=
context
.
OutputVar
(
"Labels"
);
auto
*
mask_var
=
context
.
OutputVar
(
"Mask"
);
auto
*
out_tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
label_tensor
=
label_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
mask_tensor
=
mask_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
output_type
=
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
context
.
Attr
<
int
>
(
"dtype"
));
if
(
travel_type
==
framework
::
proto
::
VarType
::
INT32
&&
output_type
==
framework
::
proto
::
VarType
::
INT32
)
{
TDMSamplerInner
<
T
,
int
,
int
>
(
context
,
input_tensor
,
travel_lod_tensor
,
layer_lod_tensor
,
out_tensor
,
label_tensor
,
mask_tensor
);
}
else
if
(
travel_type
==
framework
::
proto
::
VarType
::
INT64
&&
output_type
==
framework
::
proto
::
VarType
::
INT32
)
{
TDMSamplerInner
<
T
,
int64_t
,
int
>
(
context
,
input_tensor
,
travel_lod_tensor
,
layer_lod_tensor
,
out_tensor
,
label_tensor
,
mask_tensor
);
}
else
if
(
travel_type
==
framework
::
proto
::
VarType
::
INT32
&&
output_type
==
framework
::
proto
::
VarType
::
INT64
)
{
TDMSamplerInner
<
T
,
int
,
int64_t
>
(
context
,
input_tensor
,
travel_lod_tensor
,
layer_lod_tensor
,
out_tensor
,
label_tensor
,
mask_tensor
);
}
else
if
(
travel_type
==
framework
::
proto
::
VarType
::
INT64
&&
output_type
==
framework
::
proto
::
VarType
::
INT64
)
{
TDMSamplerInner
<
T
,
int64_t
,
int64_t
>
(
context
,
input_tensor
,
travel_lod_tensor
,
layer_lod_tensor
,
out_tensor
,
label_tensor
,
mask_tensor
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
ada787db
...
...
@@ -27,6 +27,7 @@ from ... import unique_name
from
paddle.fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
paddle.fluid.data_feeder
import
check_type
,
check_dtype
,
convert_dtype
from
paddle.fluid.framework
import
Variable
,
convert_np_dtype_to_dtype_
from
paddle.fluid.layers
import
slice
,
reshape
__all__
=
[
'fused_elemwise_activation'
,
...
...
@@ -39,6 +40,7 @@ __all__ = [
'search_pyramid_hash'
,
'shuffle_batch'
,
'tdm_child'
,
'tdm_sampler'
,
]
...
...
@@ -897,3 +899,212 @@ def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
'dtype'
:
c_dtype
},
stop_gradient
=
True
)
return
(
child
,
leaf_mask
)
def
tdm_sampler
(
x
,
neg_samples_num_list
,
layer_node_num_list
,
leaf_node_num
,
tree_travel_attr
=
None
,
tree_layer_attr
=
None
,
output_positive
=
True
,
output_list
=
True
,
seed
=
0
,
tree_dtype
=
'int32'
,
dtype
=
'int32'
):
"""
**Tdm Sampler**
According to the input positive samples at leaf node(x), do negative sampling layer by layer on the given tree.
.. code-block:: text
Given:
tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path (exclude root node)
layer_list = [[1, 2], [3, 4, 5, 6]] # two layer (exclude root node)
x = [[0], [1], [2], [3]] # Corresponding to leaf node [[3], [4], [5], [6]]
neg_samples_num_list = [0, 0] # negative sample nums = 0
layer_node_num_list = [2, 4]
leaf_node_num = 4
output_list = False
we get:
out = [[1, 3], [1, 4], [2, 5], [2, 6]]
labels = [[1, 1], [1, 1], [1, 1], [1, 1]]
mask = [[1, 1], [1, 1], [1, 1], [1, 1]]
Args:
x (Variable): Variable contained the item_id(corresponding to leaf node) information, dtype support int32/int64.
neg_samples_num_list (list(int)): Number of negative samples per layer.
layer_node_num_list (list(int)): Number of nodes per layer, must has same shape with neg_samples_num_list.
leaf_node_num (int): Number of leaf nodes.
tree_travel_attr (ParamAttr): To specify the tdm-travel parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
has shape (leaf_node_num, len(layer_node_num_list)), dtype support int32/int64.
tree_layer_attr (ParamAttr): To specify the tdm-layer parameter property. Default: None, which means the
default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr`, should
has shape (node_num, 1), dtype support int32/int64.
output_positive (bool): Whether to output positive samples (includ label and mask )at the same time.
output_list (bool): Whether to divide the output into layers and organize it into list format.
seed (int): The number of random seed.
tree_dtype(np.dtype|core.VarDesc.VarType|str): The dtype of tdm-travel and tdm-layer, support int32/int64
dtype(np.dtype|core.VarDesc.VarType|str): The dtype of output(sampling results, labels and masks)
Returns:
tuple: A tuple including sampling results, corresponding labels and masks. if output_positive = True, sampling
result will include both positive and negative samples. If sampling reseult is a positive sample, the label is 1,
and if it is a negative sample, it is 0. If the tree is unbalanced, in order to ensure the consistency of the
sampling result shape, the padding sample's mask = 0, the real sample's mask value = 1.
If output_list = True, the result will organize into list format specified by layer information.
Output variable have same type with tdm-travel and tdm-layer parameter(tree_dtype).
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
travel_list = [[1, 3], [1, 4], [2, 5], [2, 6]] # leaf node's travel path, shape(leaf_node_num, layer_num)
layer_list_flat = [[1], [2], [3], [4], [5], [6]] # shape(node_nums, 1)
neg_samples_num_list = [0, 0] # negative sample nums = 0
layer_node_num_list = [2, 4] #two layer (exclude root node)
leaf_node_num = 4
travel_array = np.array(travel_list)
layer_array = np.array(layer_list_flat)
sample, label, mask = fluid.contrib.layers.tdm_sampler(
x,
neg_samples_num_list,
layer_node_num_list,
leaf_node_num,
tree_travel_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
travel_array)),
tree_layer_attr=fluid.ParamAttr(
initializer=fluid.initializer.NumpyArrayInitializer(
layer_array)),
output_positive=True,
output_list=True,
seed=0,
tree_dtype='int32')
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
xx = np.array([[0],[1]]).reshape((2,1)).astype("int32")
exe.run(feed={"x":xx})
"""
helper
=
LayerHelper
(
"tdm_sampler"
,
**
locals
())
check_dtype
(
tree_dtype
,
'tree_dtype'
,
[
'int32'
,
'int64'
],
'fluid.contrib.layers.tdm_sampler'
)
check_dtype
(
dtype
,
'dtype'
,
[
'int32'
,
'int64'
],
'fluid.contrib.layers.tdm_sampler'
)
c_dtype
=
convert_np_dtype_to_dtype_
(
dtype
)
if
len
(
neg_samples_num_list
)
!=
len
(
layer_node_num_list
):
raise
ValueError
(
"The shape of negative samples list must match the shape of layers. "
"But received len of neg_samples_num_list: {},"
"and len of layer_node_num_list: {}, please check your input."
.
format
(
len
(
neg_samples_num_list
),
len
(
layer_node_num_list
)))
assert
leaf_node_num
is
not
None
,
"leaf_node_num should not be None here."
layer_nums
=
0
node_nums
=
0
tree_layer_offset_lod
=
[
0
]
for
layer_idx
,
layer_node_num
in
enumerate
(
layer_node_num_list
):
layer_nums
+=
1
node_nums
+=
layer_node_num
tree_layer_offset_lod
.
append
(
node_nums
)
if
neg_samples_num_list
[
layer_idx
]
>=
layer_node_num_list
[
layer_idx
]:
raise
ValueError
(
"The number of negative samples must be less than the number of nodes "
"in the layer {}, But received negative nums {}, and num of node at layer {} "
"is {}, please check your input."
.
format
(
layer_idx
,
neg_samples_num_list
[
layer_idx
],
layer_idx
,
layer_node_num_list
[
layer_idx
]))
assert
leaf_node_num
<
node_nums
,
"leaf_node_num must be less than total node nums."
travel_shape
=
[
leaf_node_num
,
layer_nums
]
travel
=
helper
.
create_parameter
(
attr
=
tree_travel_attr
,
shape
=
travel_shape
,
dtype
=
tree_dtype
,
default_initializer
=
Constant
(
0
))
layer_shape
=
[
node_nums
,
1
]
layer
=
helper
.
create_parameter
(
attr
=
tree_layer_attr
,
shape
=
layer_shape
,
dtype
=
tree_dtype
,
default_initializer
=
Constant
(
0
))
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
out
.
stop_gradient
=
True
labels
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
labels
.
stop_gradient
=
True
mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
mask
.
stop_gradient
=
True
helper
.
append_op
(
type
=
'tdm_sampler'
,
inputs
=
{
"X"
:
x
,
"Travel"
:
travel
,
"Layer"
:
layer
},
outputs
=
{
'Out'
:
out
,
'Labels'
:
labels
,
'Mask'
:
mask
},
attrs
=
{
'neg_samples_num_list'
:
neg_samples_num_list
,
'output_positive'
:
output_positive
,
'layer_offset_lod'
:
tree_layer_offset_lod
,
'seed'
:
seed
,
'dtype'
:
c_dtype
})
if
output_list
:
output_list
=
[]
labels_list
=
[]
mask_list
=
[]
start_offset
=
0
positive_flag
=
1
if
not
output_positive
:
positive_flag
=
0
for
layer_sample_num
in
neg_samples_num_list
:
end_offset
=
start_offset
+
\
layer_sample_num
+
positive_flag
layer_samples
=
slice
(
out
,
axes
=
[
1
],
starts
=
[
start_offset
],
ends
=
[
end_offset
])
layer_labels
=
slice
(
labels
,
axes
=
[
1
],
starts
=
[
start_offset
],
ends
=
[
end_offset
])
layer_mask
=
slice
(
mask
,
axes
=
[
1
],
starts
=
[
start_offset
],
ends
=
[
end_offset
])
layer_samples
=
reshape
(
layer_samples
,
[
-
1
,
layer_sample_num
+
positive_flag
,
1
])
layer_samples
.
stop_gradient
=
True
layer_labels
=
reshape
(
layer_labels
,
[
-
1
,
layer_sample_num
+
positive_flag
,
1
])
layer_labels
.
stop_gradient
=
True
layer_mask
=
reshape
(
layer_mask
,
[
-
1
,
layer_sample_num
+
positive_flag
,
1
])
layer_mask
.
stop_gradient
=
True
output_list
.
append
(
layer_samples
)
labels_list
.
append
(
layer_labels
)
mask_list
.
append
(
layer_mask
)
start_offset
=
end_offset
out
=
output_list
labels
=
labels_list
mask
=
mask_list
return
(
out
,
labels
,
mask
)
python/paddle/fluid/tests/unittests/test_tdm_sampler_op.py
0 → 100644
浏览文件 @
ada787db
# -*-coding:utf-8-*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid.layers
as
layers
import
paddle.fluid
as
fluid
import
random
import
six
from
sys
import
version_info
def
create_tdm_travel
():
tree_travel
=
[[
1
,
3
,
7
,
14
],
[
1
,
3
,
7
,
15
],
[
1
,
3
,
8
,
16
],
[
1
,
3
,
8
,
17
],
[
1
,
4
,
9
,
18
],
[
1
,
4
,
9
,
19
],
[
1
,
4
,
10
,
20
],
[
1
,
4
,
10
,
21
],
[
2
,
5
,
11
,
22
],
[
2
,
5
,
11
,
23
],
[
2
,
5
,
12
,
24
],
[
2
,
5
,
12
,
25
],
[
2
,
6
,
13
,
0
]]
return
tree_travel
def
create_tdm_layer
():
tree_layer
=
[[
1
,
2
],
[
3
,
4
,
5
,
6
],
[
7
,
8
,
9
,
10
,
11
,
12
,
13
],
[
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
]]
return
tree_layer
type_dict
=
{
"int32"
:
int
(
core
.
VarDesc
.
VarType
.
INT32
),
"int64"
:
int
(
core
.
VarDesc
.
VarType
.
INT64
)
}
class
TestTDMSamplerOp
(
OpTest
):
def
setUp
(
self
):
self
.
__class__
.
op_type
=
"tdm_sampler"
self
.
config
()
self
.
tree_travel
=
create_tdm_travel
()
self
.
tree_layer
=
create_tdm_layer
()
output_0
=
self
.
x_shape
[
0
]
output_1
=
len
(
self
.
neg_samples_num_list
)
+
\
np
.
sum
(
self
.
neg_samples_num_list
)
self
.
output_shape
=
(
output_0
,
output_1
)
self
.
layer_sample_nums
=
[
1
+
i
for
i
in
self
.
neg_samples_num_list
]
layer_node_num_list
=
[
len
(
i
)
for
i
in
self
.
tree_layer
]
tree_layer_offset_lod
=
[
0
]
tree_layer_flat
=
[]
node_nums
=
0
for
layer_idx
,
layer_node
in
enumerate
(
layer_node_num_list
):
tree_layer_flat
+=
self
.
tree_layer
[
layer_idx
]
node_nums
+=
layer_node
tree_layer_offset_lod
.
append
(
node_nums
)
travel_np
=
np
.
array
(
self
.
tree_travel
).
astype
(
self
.
tree_dtype
)
layer_np
=
np
.
array
(
tree_layer_flat
).
astype
(
self
.
tree_dtype
)
layer_np
=
layer_np
.
reshape
([
-
1
,
1
])
self
.
x_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
13
,
size
=
self
.
x_shape
).
astype
(
self
.
x_type
)
out
=
np
.
random
.
random
(
self
.
output_shape
).
astype
(
self
.
out_dtype
)
label
=
np
.
random
.
random
(
self
.
output_shape
).
astype
(
self
.
out_dtype
)
mask
=
np
.
random
.
random
(
self
.
output_shape
).
astype
(
self
.
out_dtype
)
self
.
attrs
=
{
'neg_samples_num_list'
:
self
.
neg_samples_num_list
,
'output_positive'
:
True
,
'layer_offset_lod'
:
tree_layer_offset_lod
,
'seed'
:
0
,
'dtype'
:
type_dict
[
self
.
out_dtype
]
}
self
.
inputs
=
{
'X'
:
self
.
x_np
,
'Travel'
:
travel_np
,
'Layer'
:
layer_np
}
self
.
outputs
=
{
'Out'
:
out
,
'Labels'
:
label
,
'Mask'
:
mask
}
def
config
(
self
):
"""set test shape & type"""
self
.
neg_samples_num_list
=
[
0
,
0
,
0
,
0
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int32'
self
.
tree_dtype
=
'int32'
self
.
out_dtype
=
'int32'
def
test_check_output
(
self
):
places
=
self
.
_get_places
()
for
place
in
places
:
outs
,
fetch_list
=
self
.
_calc_output
(
place
)
self
.
out
=
[
np
.
array
(
out
)
for
out
in
outs
]
x_res
=
self
.
out
[
fetch_list
.
index
(
'Out'
)]
label_res
=
self
.
out
[
fetch_list
.
index
(
'Labels'
)]
mask_res
=
self
.
out
[
fetch_list
.
index
(
'Mask'
)]
# check dtype
if
self
.
out_dtype
==
'int32'
:
assert
x_res
.
dtype
==
np
.
int32
assert
label_res
.
dtype
==
np
.
int32
assert
mask_res
.
dtype
==
np
.
int32
elif
self
.
out_dtype
==
'int64'
:
assert
x_res
.
dtype
==
np
.
int64
assert
label_res
.
dtype
==
np
.
int64
assert
mask_res
.
dtype
==
np
.
int64
x_res
=
x_res
.
reshape
(
self
.
output_shape
)
label_res
=
label_res
.
reshape
(
self
.
output_shape
)
mask_res
=
mask_res
.
reshape
(
self
.
output_shape
)
layer_nums
=
len
(
self
.
neg_samples_num_list
)
for
batch_ids
,
x_batch
in
enumerate
(
x_res
):
start_offset
=
0
positive_travel
=
[]
for
layer_idx
in
range
(
layer_nums
):
end_offset
=
start_offset
+
self
.
layer_sample_nums
[
layer_idx
]
sampling_res
=
x_batch
[
start_offset
:
end_offset
]
sampling_res_list
=
sampling_res
.
tolist
()
positive_travel
.
append
(
sampling_res_list
[
0
])
label_sampling_res
=
label_res
[
batch_ids
][
start_offset
:
end_offset
]
mask_sampling_res
=
mask_res
[
batch_ids
][
start_offset
:
end_offset
]
# check unique
if
sampling_res_list
[
0
]
!=
0
:
assert
len
(
set
(
sampling_res_list
))
==
len
(
sampling_res_list
),
"len(set(sampling_res_list)): {}, len(sampling_res_list): {} , sample_res: {}, label_res:{}, mask_res: {}"
.
format
(
len
(
set
(
sampling_res_list
)),
len
(
sampling_res_list
),
sampling_res
,
label_sampling_res
,
mask_sampling_res
)
# check legal
layer_node
=
self
.
tree_layer
[
layer_idx
]
layer_node
.
append
(
0
)
for
sample
in
sampling_res_list
:
assert
(
sample
in
layer_node
),
"sample: {}, layer_node: {} , sample_res: {}, label_res: {}, mask_res:{}"
.
format
(
sample
,
layer_node
,
sampling_res
,
label_sampling_res
,
mask_sampling_res
)
# check label
label_flag
=
1
if
sampling_res
[
0
]
==
0
:
label_flag
=
0
assert
label_sampling_res
[
0
]
==
label_flag
# check mask
padding_index
=
np
.
where
(
sampling_res
==
0
)
assert
not
np
.
sum
(
mask_sampling_res
[
padding_index
]
),
"np.sum(mask_sampling_res[padding_index]): {} "
.
format
(
np
.
sum
(
mask_sampling_res
[
padding_index
]))
start_offset
=
end_offset
# check travel legal
assert
self
.
tree_travel
[
int
(
self
.
x_np
[
batch_ids
])]
==
positive_travel
class
TestCase1
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test input int64"""
self
.
neg_samples_num_list
=
[
0
,
0
,
0
,
0
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int64'
self
.
tree_dtype
=
'int64'
self
.
out_dtype
=
'int32'
class
TestCase2
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test dtype int64"""
self
.
neg_samples_num_list
=
[
0
,
0
,
0
,
0
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int32'
self
.
tree_dtype
=
'int32'
self
.
out_dtype
=
'int64'
class
TestCase3
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test all dtype int64"""
self
.
neg_samples_num_list
=
[
0
,
0
,
0
,
0
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int64'
self
.
tree_dtype
=
'int64'
self
.
out_dtype
=
'int64'
class
TestCase4
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test one neg"""
self
.
neg_samples_num_list
=
[
1
,
1
,
1
,
1
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int64'
self
.
tree_dtype
=
'int32'
self
.
out_dtype
=
'int64'
class
TestCase5
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test normal neg"""
self
.
neg_samples_num_list
=
[
1
,
2
,
3
,
4
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int64'
self
.
tree_dtype
=
'int32'
self
.
out_dtype
=
'int64'
class
TestCase6
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test huge batchsize"""
self
.
neg_samples_num_list
=
[
1
,
2
,
3
,
4
]
self
.
x_shape
=
(
100
,
1
)
self
.
x_type
=
'int64'
self
.
tree_dtype
=
'int32'
self
.
out_dtype
=
'int64'
class
TestCase7
(
TestTDMSamplerOp
):
def
config
(
self
):
"""test full neg"""
self
.
neg_samples_num_list
=
[
1
,
3
,
6
,
11
]
self
.
x_shape
=
(
10
,
1
)
self
.
x_type
=
'int64'
self
.
tree_dtype
=
'int32'
self
.
out_dtype
=
'int64'
class
TestTDMSamplerShape
(
unittest
.
TestCase
):
def
test_shape
(
self
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
tdm_tree_travel
=
create_tdm_travel
()
tdm_tree_layer
=
create_tdm_layer
()
layer_node_num_list
=
[
len
(
i
)
for
i
in
tdm_tree_layer
]
tree_layer_flat
=
[]
for
layer_idx
,
layer_node
in
enumerate
(
layer_node_num_list
):
tree_layer_flat
+=
tdm_tree_layer
[
layer_idx
]
travel_array
=
np
.
array
(
tdm_tree_travel
).
astype
(
'int32'
)
layer_array
=
np
.
array
(
tree_layer_flat
).
astype
(
'int32'
)
neg_samples_num_list
=
[
1
,
2
,
3
,
4
]
leaf_node_num
=
13
sample
,
label
,
mask
=
fluid
.
contrib
.
layers
.
tdm_sampler
(
x
,
neg_samples_num_list
,
layer_node_num_list
,
leaf_node_num
,
tree_travel_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
travel_array
)),
tree_layer_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
layer_array
)),
output_positive
=
True
,
output_list
=
True
,
seed
=
0
,
tree_dtype
=
'int32'
,
dtype
=
'int32'
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed
=
{
'x'
:
np
.
array
([[
0
],
[
1
],
[
2
],
[
3
],
[
4
],
[
5
],
[
6
],
[
7
],
[
8
],
[
9
],
[
10
],
[
11
],
[
12
]]).
astype
(
'int32'
)
}
exe
.
run
(
feed
=
feed
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录