layer.h 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
117 118
      : name_(),
        var_desc_(nullptr),
X
polish  
Xin Pan 已提交
119 120
        var_(var),
        grads_(grad),
121
        block_(nullptr),
122
        persistable_(false),
X
Xin Pan 已提交
123 124
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
125
        pre_op_out_name_(),
M
minqiyang 已提交
126
        pre_op_out_idx_(-1) {}
127

M
minqiyang 已提交
128
 public:
M
minqiyang 已提交
129
  virtual ~VarBase() {
130 131 132
    // LOG(ERROR) << "remove var " << name_;

    if (block_ && !persistable_) {
133 134 135
      block_->RemoveVar(name_);
    }

M
minqiyang 已提交
136 137
    if (var_) {
      delete var_;
138
      var_ = nullptr;
M
minqiyang 已提交
139 140 141 142
    }

    if (grads_) {
      delete grads_;
143
      grads_ = nullptr;
M
minqiyang 已提交
144
    }
145 146 147

    pre_op_ = nullptr;
    pre_op_out_idx_ = -1;
M
minqiyang 已提交
148
  }
149

M
minqiyang 已提交
150 151
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
152

M
minqiyang 已提交
153 154 155 156
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
157

M
minqiyang 已提交
158 159
  void RunBackward();

160 161 162 163 164 165 166 167
  inline void ResetPreOp(OpBase* op) {
    if (op == pre_op_) {
      // clear pre_op info when op equals to var's pre_op
      pre_op_ = nullptr;
      pre_op_out_idx_ = -1;
    }
  }

X
Xin Pan 已提交
168
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
169
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
170 171 172
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
173 174 175
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
176 177
  }

M
minqiyang 已提交
178 179 180 181 182 183 184 185 186 187
  void ClearGradient() {
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }
X
Xin Pan 已提交
188

M
minqiyang 已提交
189
  framework::LoDTensor& GradValue();
190

M
minqiyang 已提交
191 192
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
193

M
minqiyang 已提交
194 195 196 197 198 199 200
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

201
  std::string name_;
202
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
203

M
minqiyang 已提交
204 205
  framework::Variable* var_;
  VarBase* grads_;
206

207
  framework::BlockDesc* block_;
208
  bool persistable_;
209

X
Xin Pan 已提交
210
 private:
211
  bool stop_gradient_;
X
Xin Pan 已提交
212 213 214
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
215 216
};

M
minqiyang 已提交
217 218 219
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
220
class PYBIND11_HIDDEN OpBase {
221
 public:
X
Xin Pan 已提交
222 223 224
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
225
        backward_id_(-1),
M
minqiyang 已提交
226
        trace_id_(-1),
227 228
        place_(platform::CPUPlace()),
        backward_hooks_() {}
229 230

  virtual ~OpBase() {
231 232 233 234 235
    // reset all output vars' pre op
    for (auto iter : output_vars_) {
      for (VarBase* var : iter.second) {
        var->ResetPreOp(this);
      }
X
Xin Pan 已提交
236
    }
237

238
    // remove op desc from block desc
239
    if (block_) {
240
      block_->RemoveOpInternal(op_desc_);
241
    }
242 243 244 245 246

    // release resource
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
247 248
  }

X
Xin Pan 已提交
249
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
250

251 252 253 254
  void RegisterBackwardHooks(const py::object& callable);

  void InvokeBackwardHooks();

X
polish  
Xin Pan 已提交
255 256
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
257
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
258
  int forward_id_;
X
polish  
Xin Pan 已提交
259

X
Xin Pan 已提交
260
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
261
  // not both.
X
polish  
Xin Pan 已提交
262
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
263
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
264
  int backward_id_;
M
minqiyang 已提交
265
  int trace_id_;
X
Xin Pan 已提交
266

P
Paddle CI 已提交
267
  platform::Place place_;
M
minqiyang 已提交
268

M
minqiyang 已提交
269 270 271
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
272
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
273

X
polish  
Xin Pan 已提交
274
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
275
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
276
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
277
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
278

279
  framework::BlockDesc* block_;
280 281

  std::vector<py::object> backward_hooks_;
282 283 284 285 286 287 288 289 290 291
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
292
};
293

X
Xin Pan 已提交
294 295 296 297
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
298 299
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
300

X
Xin Pan 已提交
301
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
302

X
polish  
Xin Pan 已提交
303 304
  static int NumFuncs();

X
Xin Pan 已提交
305
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
306 307
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
308 309
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
310

X
polish  
Xin Pan 已提交
311 312 313
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
314 315 316 317
};

}  // namespace imperative
}  // namespace paddle