layer.h 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24
#include <memory>  // NOLINT
M
minqiyang 已提交
25

26 27 28 29
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
30
#include "paddle/fluid/platform/device_context.h"
M
minqiyang 已提交
31
#include "paddle/fluid/operators/math/math_function.h"
32

M
minqiyang 已提交
33 34
#include "paddle/fluid/imperative/type_defs.h"

35 36 37
namespace paddle {
namespace imperative {

M
minqiyang 已提交
38 39
class VarBase;

X
Xin Pan 已提交
40 41
namespace py = ::pybind11;

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
68
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
89 90
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
91 92 93 94 95
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
96

97 98
class OpBase;

M
minqiyang 已提交
99 100 101 102 103
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
104 105
class VarBase {
 public:
M
minqiyang 已提交
106
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
107

M
minqiyang 已提交
108 109 110 111
  explicit VarBase(bool stop_gradient)
      : VarBase(new framework::Variable(),
                stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}

M
minqiyang 已提交
112
  VarBase(framework::Variable* var, VarBase* grad)
M
minqiyang 已提交
113 114 115 116
      : VarBase(var, grad, false) {}

 private:
  VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
X
Xin Pan 已提交
117
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
118 119
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
120 121
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
M
minqiyang 已提交
122
        pre_op_out_idx_(-1) {}
123

M
minqiyang 已提交
124
 public:
M
minqiyang 已提交
125 126 127 128 129 130 131 132 133
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
134

M
minqiyang 已提交
135 136
  inline OpBase* PreOp() const { return pre_op_; }
  inline int PreOpOutIdx() const { return pre_op_out_idx_; }
X
Xin Pan 已提交
137

M
minqiyang 已提交
138 139 140 141
  inline void SetStopGradient(bool stop_gradient) {
    stop_gradient_ = stop_gradient;
  }
  inline bool IsStopGradient() const { return stop_gradient_; }
142

X
Xin Pan 已提交
143
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
M
minqiyang 已提交
144
                  int pre_op_out_idx, bool pre_op_stop_gradient) {
X
Xin Pan 已提交
145 146 147
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
M
minqiyang 已提交
148 149 150
    if (pre_op_stop_gradient) {
      stop_gradient_ = pre_op_stop_gradient;
    }
X
Xin Pan 已提交
151 152
  }

M
minqiyang 已提交
153 154
  void RunBackward() {
    if (!pre_op_) return;
M
minqiyang 已提交
155

M
minqiyang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    VLOG(3) << "start backward";
    auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
    operators::math::set_constant(
        *(platform::DeviceContextPool::Instance().Get(
            var_->GetMutable<framework::LoDTensor>()->place())),
        grads_t, 1.0);

    PADDLE_ENFORCE(
        grads_ ==
        pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_);
    Autograd().RunBackward(this);
  }

  void ClearGradient() {
    VLOG(1) << "clear gradient of " << var_desc_->Name();
    if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
      auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
      operators::math::set_constant(
          *(platform::DeviceContextPool::Instance().Get(
              grads_->var_->Get<framework::LoDTensor>().place())),
          grads_t, 0.0);
    }
  }
X
Xin Pan 已提交
179

M
minqiyang 已提交
180
  framework::LoDTensor& GradValue();
181

M
minqiyang 已提交
182 183
  std::unique_ptr<VarBase> NewVarBase(const platform::Place& dst_place,
                                      const bool blocking) const;
M
minqiyang 已提交
184

M
minqiyang 已提交
185 186 187 188 189 190 191
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

192
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
193

M
minqiyang 已提交
194 195
  framework::Variable* var_;
  VarBase* grads_;
196

X
Xin Pan 已提交
197
 private:
198
  bool stop_gradient_;
X
Xin Pan 已提交
199 200 201
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
202 203
};

M
minqiyang 已提交
204 205 206
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
207 208
class OpBase {
 public:
X
Xin Pan 已提交
209 210 211
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
M
minqiyang 已提交
212
        backward_id_(-1),
P
Paddle CI 已提交
213
        place_(platform::CPUPlace()) {}
214 215

  virtual ~OpBase() {
X
Xin Pan 已提交
216 217 218
    for (framework::OpDesc* desc : grad_op_descs_) {
      delete desc;
    }
219 220
  }

X
Xin Pan 已提交
221
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
222

X
polish  
Xin Pan 已提交
223 224
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
225
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
226
  int forward_id_;
X
polish  
Xin Pan 已提交
227

X
Xin Pan 已提交
228
  // When has backward, one of `grad_op_descs_` or `backward_id_` is set,
X
polish  
Xin Pan 已提交
229
  // not both.
X
polish  
Xin Pan 已提交
230
  // Note: each fwd op corresponds to a vector of bwd ops.
X
Xin Pan 已提交
231
  std::vector<framework::OpDesc*> grad_op_descs_;
X
Xin Pan 已提交
232
  int backward_id_;
X
Xin Pan 已提交
233

P
Paddle CI 已提交
234
  platform::Place place_;
M
minqiyang 已提交
235

M
minqiyang 已提交
236 237 238
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
239
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
240

X
polish  
Xin Pan 已提交
241
  // Inputs to a vector of bwd ops.
X
Xin Pan 已提交
242
  std::vector<framework::VariableValueMap> grad_input_vars_;
X
polish  
Xin Pan 已提交
243
  // Outputs to a vector of bwd ops.
X
Xin Pan 已提交
244
  std::vector<framework::VariableValueMap> grad_output_vars_;
X
polish  
Xin Pan 已提交
245

246 247 248 249 250 251 252 253 254 255 256
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
257
};
258

X
Xin Pan 已提交
259 260 261 262
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
263 264
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
265

X
Xin Pan 已提交
266
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
267

X
polish  
Xin Pan 已提交
268 269
  static int NumFuncs();

X
Xin Pan 已提交
270
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
271 272
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
273 274
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
275

X
polish  
Xin Pan 已提交
276 277 278
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
279 280 281 282
};

}  // namespace imperative
}  // namespace paddle