layer.h 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

X
Xin Pan 已提交
17 18 19 20 21 22 23
// clang-format off
#include "paddle/fluid/framework/python_headers.h"
// clang-format on

#include <map>     // NOLINT
#include <string>  // NOLINT
#include <vector>  // NOLINT
M
minqiyang 已提交
24

25 26 27 28
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/enforce.h"
M
minqiyang 已提交
29
#include "paddle/fluid/platform/device_context.h"
30

M
minqiyang 已提交
31 32
#include "paddle/fluid/imperative/type_defs.h"

33 34 35
namespace paddle {
namespace imperative {

M
minqiyang 已提交
36 37
class VarBase;

X
Xin Pan 已提交
38 39
namespace py = ::pybind11;

X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
class PreparedOp {
 public:
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             framework::OperatorWithKernel::OpKernelFunc func,
             platform::DeviceContext* dev_ctx)
      : op(op), ctx(ctx), func(func), dev_ctx(dev_ctx) {}

  static PreparedOp Prepare(const framework::RuntimeContext& ctx,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place) {
    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto* dev_ctx = pool.Get(place);

    // check if op[type] has kernel registered.
    auto& all_op_kernels = op.AllOpKernels();
    auto kernels_iter = all_op_kernels.find(op.Type());
    if (kernels_iter == all_op_kernels.end()) {
      PADDLE_THROW(
          "There are no kernels which are registered in the %s operator.",
          op.Type());
    }

    framework::OperatorWithKernel::OpKernelMap& kernels = kernels_iter->second;

    auto expected_kernel_key = op.GetExpectedKernelType(
X
Xin Pan 已提交
66
        framework::ExecutionContext(op, framework::Scope(), *dev_ctx, ctx));
X
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

    auto kernel_iter = kernels.find(expected_kernel_key);
#ifdef PADDLE_WITH_MKLDNN
    // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
    if (kernel_iter == kernels.end() &&
        expected_kernel_key.library_type_ == framework::LibraryType::kMKLDNN) {
      VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
      expected_kernel_key.library_type_ = framework::LibraryType::kPlain;
      expected_kernel_key.data_layout_ = framework::DataLayout::kAnyLayout;
      kernel_iter = kernels.find(expected_kernel_key);
    }
#endif
    if (kernel_iter == kernels.end()) {
      PADDLE_THROW("op %s does not have kernel for %s", op.Type(),
                   KernelTypeToString(expected_kernel_key));
    }
    return PreparedOp(op, ctx, kernel_iter->second, dev_ctx);
  }

M
minqiyang 已提交
87 88
  inline platform::DeviceContext* GetDeviceContext() const { return dev_ctx; }

X
Xin Pan 已提交
89 90 91 92 93
  const framework::OperatorBase& op;
  const framework::RuntimeContext& ctx;
  framework::OperatorWithKernel::OpKernelFunc func;
  platform::DeviceContext* dev_ctx;
};
X
polish  
Xin Pan 已提交
94

95 96
class OpBase;

M
minqiyang 已提交
97 98 99 100 101
/* The wrapper for Variable which holds a Variable and a VarBase of its
 * gradient. This object should be managed totally by Python intepreter.
 *
 * Nearly all interface should be implemented in C++.
 */
102 103
class VarBase {
 public:
104
  VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
X
polish  
Xin Pan 已提交
105 106

  // Owns `var` and `grad`
107
  VarBase(framework::Variable* var, VarBase* grad)
X
Xin Pan 已提交
108
      : var_desc_(nullptr),
X
polish  
Xin Pan 已提交
109 110
        var_(var),
        grads_(grad),
X
Xin Pan 已提交
111 112 113
        stop_gradient_(false),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
M
minqiyang 已提交
114 115

  explicit VarBase(bool stop_gradient)
X
Xin Pan 已提交
116
      : var_desc_(nullptr),
X
Xin Pan 已提交
117
        var_(new framework::Variable()),
M
minqiyang 已提交
118
        grads_(stop_gradient ? nullptr : new VarBase(true)),
X
Xin Pan 已提交
119 120 121
        stop_gradient_(stop_gradient),
        pre_op_(nullptr),
        pre_op_out_idx_(-1) {}
122

M
minqiyang 已提交
123 124 125 126 127 128 129 130 131
  virtual ~VarBase() {
    if (var_) {
      delete var_;
    }

    if (grads_) {
      delete grads_;
    }
  }
132

X
Xin Pan 已提交
133 134 135 136 137 138
  OpBase* PreOp() const { return pre_op_; }
  int PreOpOutIdx() const { return pre_op_out_idx_; }

  void SetStopGradient(bool stop_gradient) { stop_gradient_ = stop_gradient; }
  bool IsStopGradient() const { return stop_gradient_; }

X
Xin Pan 已提交
139
  void RunBackward();
140

X
Xin Pan 已提交
141 142 143 144 145 146 147 148 149
  void TrackPreOp(OpBase* pre_op, const std::string& pre_op_out_name,
                  int pre_op_out_idx, bool stop_gradient) {
    pre_op_ = pre_op;
    pre_op_out_name_ = pre_op_out_name;
    pre_op_out_idx_ = pre_op_out_idx;
    stop_gradient_ = stop_gradient;
  }

  void ClearGradient() {
X
Xin Pan 已提交
150 151 152 153
    delete grads_;
    grads_ = new VarBase(true);
  }

M
minqiyang 已提交
154
  framework::LoDTensor& GradValue();
155

M
minqiyang 已提交
156 157
  framework::LoDTensor* CopiedTensor() const;

M
minqiyang 已提交
158 159 160 161 162 163 164
  inline std::string GradName() const {
    PADDLE_ENFORCE(
        var_desc_,
        "Couldn't get gradient variable's name, please call backward() first");
    return string::Sprintf("%s@IGrad", var_desc_->Name());
  }

165
  framework::VarDesc* var_desc_;
M
minqiyang 已提交
166

M
minqiyang 已提交
167 168
  framework::Variable* var_;
  VarBase* grads_;
169

X
Xin Pan 已提交
170
 private:
171
  bool stop_gradient_;
X
Xin Pan 已提交
172 173 174
  OpBase* pre_op_;
  std::string pre_op_out_name_;
  int pre_op_out_idx_;
175 176
};

M
minqiyang 已提交
177 178 179
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
 * gradient. This object should be managed totally by Python intepreter.
 */
180 181
class OpBase {
 public:
X
Xin Pan 已提交
182 183 184
  OpBase()
      : op_desc_(nullptr),
        forward_id_(-1),
X
polish  
Xin Pan 已提交
185
        grad_op_desc_(nullptr),
M
minqiyang 已提交
186 187
        backward_id_(-1),
        expected_place_(platform::CPUPlace()) {}
188 189 190 191 192

  virtual ~OpBase() {
    if (grad_op_desc_) delete grad_op_desc_;
  }

X
Xin Pan 已提交
193
  std::map<std::string, std::vector<VarBase*>> ApplyGrad();
194

X
polish  
Xin Pan 已提交
195 196
  // One of `op_desc_` or `forward_id_` is set, not both.
  // For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
197
  framework::OpDesc* op_desc_;
X
Xin Pan 已提交
198
  int forward_id_;
X
polish  
Xin Pan 已提交
199 200
  // When has backward, one of `grad_op_desc_` or `backward_id_` is set,
  // not both.
201
  framework::OpDesc* grad_op_desc_;
X
Xin Pan 已提交
202
  int backward_id_;
X
Xin Pan 已提交
203

M
minqiyang 已提交
204 205
  platform::Place expected_place_;

M
minqiyang 已提交
206 207 208
  VarBasePtrMap input_vars_;
  VarBasePtrMap output_vars_;
  OpBasePtrMap pre_ops_;
X
Xin Pan 已提交
209
  std::map<std::string, std::vector<int>> pre_ops_out_idx_;
210

M
minqiyang 已提交
211 212
  framework::VariableValueMap grad_input_vars_;
  framework::VariableValueMap grad_output_vars_;
213 214 215 216 217 218 219 220 221 222 223
  framework::BlockDesc* block_;
};

class Layer {
 public:
  virtual ~Layer() {}

  virtual std::vector<VarBase> Forward(const std::vector<VarBase>& inputs) {
    std::vector<VarBase> vars;
    return vars;
  }
X
Xin Pan 已提交
224
};
225

X
Xin Pan 已提交
226 227 228 229
class PyLayer {
 public:
  virtual ~PyLayer() {}

X
polish  
Xin Pan 已提交
230 231
  static const char* kFwdInp;
  static const char* kFwdOut;
X
Xin Pan 已提交
232

X
Xin Pan 已提交
233
  static void RegisterFunc(int func_id, const py::object& py_func);
X
Xin Pan 已提交
234

X
polish  
Xin Pan 已提交
235 236
  static int NumFuncs();

X
Xin Pan 已提交
237
  static std::vector<VarBase*> Apply(int func_id,
X
Xin Pan 已提交
238 239
                                     const std::vector<VarBase*>& inputs);

X
polish  
Xin Pan 已提交
240 241
  static std::vector<framework::Variable*> ApplyGrad(
      int func_id, const std::vector<framework::Variable*>& inputs);
242

X
polish  
Xin Pan 已提交
243 244 245
 private:
  static std::vector<framework::Variable*> CallPythonFunc(
      const py::object& callable, const std::vector<framework::Variable*>& ins);
246 247 248 249
};

}  // namespace imperative
}  // namespace paddle