distribute_transpiler.py 28.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16
import framework
17
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
T
done  
typhoonzero 已提交
18 19
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


87 88 89 90
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
91 92 93 94 95
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
96
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
97 98
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
99

T
typhoonzero 已提交
100 101
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
102 103
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
132 133 134 135
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
136
                  trainer_id,
T
done  
typhoonzero 已提交
137 138 139 140 141
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
142 143
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
144
            to do parameter optimization. And the optimization graph will be put
145
            into a parameter server program.
T
done  
typhoonzero 已提交
146

147
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
148 149
            parameter servers.

T
typhoonzero 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            Steps to transpile trainer:
            1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
            2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
            3. modify trainer program add split_op to each grad variable.
            4. append send_op to send splited variables to server and fetch
               params(splited blocks or origin param) from server.
            5. append concat_op to merge splited blocks to update local weights.

            Steps to transpile pserver:
            1. create new program for parameter server.
            2. create params and grad variables that assigned to current server instance.
            3. create a sub-block in the server side program
            4. append ops that should run on current server instance.
            5. add listen_and_serv op

T
done  
typhoonzero 已提交
165
            :param optimize_ops: op list of optimization, should be the
166
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
167
            :type optimize_ops: list
T
typhoonzero 已提交
168 169 170 171
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
T
typhoonzero 已提交
172
            :param program: program to transpile, default is default_main_program
T
typhoonzero 已提交
173
            :type program: Program
T
done  
typhoonzero 已提交
174 175
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
176 177 178 179 180
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
181
        """
T
typhoonzero 已提交
182
        assert (callable(split_method))
T
done  
typhoonzero 已提交
183 184
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
185
        self.program = program
T
done  
typhoonzero 已提交
186
        self.trainers = trainers
T
typhoonzero 已提交
187
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
188 189 190 191
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
192
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
193 194

        # step1
T
typhoonzero 已提交
195 196 197 198
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
199
        # step2
T
typhoonzero 已提交
200
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
201 202
        # step3
        send_inputs = []
T
typhoonzero 已提交
203
        send_outputs = []
T
typhoonzero 已提交
204 205 206 207
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
208 209
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
210 211 212
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
213 214
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
215
        eplist = split_method(send_inputs, pserver_endpoints)
216
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
217 218 219 220 221 222 223 224
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
225

T
typhoonzero 已提交
226 227
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
T
typhoonzero 已提交
228
            persistable=True,
T
typhoonzero 已提交
229 230 231
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

232
        # create send_op
T
typhoonzero 已提交
233
        program.global_block().append_op(
T
typhoonzero 已提交
234 235
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
236 237
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
238
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
239 240 241
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
242 243
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
244
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
245
            program.global_block().append_op(
T
typhoonzero 已提交
246
                type="concat",
T
typhoonzero 已提交
247
                inputs={"X": splited_var},
T
typhoonzero 已提交
248
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
249
                attrs={"axis": 0})
T
typhoonzero 已提交
250

T
typhoonzero 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
        # step2
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            pserver_program.global_block().create_var(
                name=orig_var_name,
                persistable=True,
                dtype=v.dtype,
                shape=v.shape)
            print("create origin var: ", orig_var_name)
            for trainer_id in xrange(self.trainers):
                var = pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (orig_var_name, trainer_id),
                    persistable=False,
                    dtype=v.dtype,
                    shape=v.shape)
                recv_inputs.append(var)
                print("create per trainer var: ", var.name)
        # step3
        optimize_block = pserver_program.create_block(0)
        # step 4
        # Create a union-find data struct from optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 4.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 4.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
        for _, op in enumerate(self.optimize_ops):
            for _, opt_op in enumerate(opt_op_on_pserver):
                if ufind.is_connected(op, opt_op):
                    if self._is_opt_op(op):
                        self._append_pserver_ops(optimize_block, op, endpoint)
                    else:
                        self._append_pserver_non_opt_ops(optimize_block, op)
                    break
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
                "OptimizeBlock": optimize_block,
                "endpoint": endpoint,
                "Fanin": self.trainers
            })
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
        """
T
typhoonzero 已提交
397
        block_map = dict()
T
typhoonzero 已提交
398
        var_mapping = dict()
T
typhoonzero 已提交
399 400 401 402 403 404
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
405
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
406
            if len(splited) == 1:
T
typhoonzero 已提交
407 408 409 410 411 412 413 414 415
                if add_trainer_suffix:
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
416
                continue
T
typhoonzero 已提交
417 418

            var_mapping[varname] = []
T
typhoonzero 已提交
419 420 421 422
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
423

T
typhoonzero 已提交
424
            for i, block in enumerate(splited):
T
typhoonzero 已提交
425
                size = block[1]
T
typhoonzero 已提交
426 427 428 429
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
430 431 432 433 434 435 436
                new_var_name = ""
                if add_trainer_suffix:
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
437
                var = program.global_block().create_var(
T
typhoonzero 已提交
438 439
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
440
                    dtype=orig_var.dtype,
441
                    type=orig_var.type,
T
typhoonzero 已提交
442
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
443
                var_mapping[varname].append(var)
T
typhoonzero 已提交
444
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
445
        return var_mapping
T
done  
typhoonzero 已提交
446 447 448 449 450 451 452 453 454

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
T
typhoonzero 已提交
455
            persistable=True)
T
done  
typhoonzero 已提交
456

T
typhoonzero 已提交
457
    def _append_split_op(self, program, gradblocks):
458
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
459 460
        var_mapping = self._create_vars_from_blocklist(
            program, gradblocks, add_trainer_suffix=True)
T
typhoonzero 已提交
461
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
462 463
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
464
                continue
T
typhoonzero 已提交
465
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
466
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
467 468 469 470 471 472 473 474
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
475
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
476 477 478 479 480 481 482 483 484 485 486 487
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
488
        return var_mapping
T
done  
typhoonzero 已提交
489

T
typhoonzero 已提交
490 491 492 493
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
494
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
517 518 519 520 521 522 523
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
        return orig_var_name

524 525
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
526
        pserver_block = program.global_block()
T
typhoonzero 已提交
527
        new_inputs = dict()
T
typhoonzero 已提交
528 529
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
530
        for key in opt_op.input_names:
T
typhoonzero 已提交
531 532 533
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
534 535
                    if same_or_split_var(
                            self._orig_varname(g.name), opt_op.input(key)[0]):
T
typhoonzero 已提交
536 537 538 539 540 541
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
542 543
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
T
typhoonzero 已提交
544
                if self.trainers > 1:
T
typhoonzero 已提交
545 546 547 548 549 550
                    vars2merge = []
                    for i in xrange(self.trainers):
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

551
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
552 553 554
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
555
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
556 557 558 559
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
560 561 562 563 564
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
565
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
566 567 568 569
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
570
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
571
                    name=param_block.name,
T
typhoonzero 已提交
572
                    persistable=True,
T
typhoonzero 已提交
573 574 575
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
576 577 578
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
T
typhoonzero 已提交
579
                new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
580

T
typhoonzero 已提交
581
        for key in opt_op.input_names:
582 583
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
584
                continue
T
typhoonzero 已提交
585
            var = self.program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
586 587 588 589
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
590
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
591 592 593 594 595
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
596

597
        # change output's ParamOut variable
T
typhoonzero 已提交
598 599
        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)
600
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
601

602
        optimize_block.append_op(
T
typhoonzero 已提交
603 604
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
605
            outputs=outputs,
T
typhoonzero 已提交
606 607
            attrs=opt_op.attrs)

608 609
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
610
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
611 612
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
613 614 615 616
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
617
            for var in varlist:
618 619
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
620 621 622 623 624 625 626 627
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

628 629 630 631 632 633 634 635 636 637 638
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

639
        optimize_block.append_op(
T
typhoonzero 已提交
640
            type=opt_op.type,
T
typhoonzero 已提交
641 642
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
643 644
            attrs=opt_op.attrs)

645 646 647 648
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
649 650 651 652 653
        op1_input_names = op1.desc.input_arg_names()
        op1_output_names = op1.desc.output_arg_names()

        op2_input_names = op2.desc.input_arg_names()
        op2_output_names = op2.desc.output_arg_names()
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
T
typhoonzero 已提交
674 675
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
676 677 678 679 680 681 682
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
683
        if op.input("Param") in param_names:
684 685 686
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
687
                param = op.input("Param")[0]
T
typhoonzero 已提交
688
                if same_or_split_var(n, param) and n != param:
689 690 691 692
                    return True
            return False
        return False

T
typhoonzero 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap