distribute_transpiler.py 28.1 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16
import framework
17
from framework import Program, default_main_program, default_startup_program, Parameter, Variable
T
done  
typhoonzero 已提交
18 19
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


87 88 89 90
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
91 92 93 94 95
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
96
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
97 98
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
99

T
typhoonzero 已提交
100 101
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
102 103
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
132 133 134 135
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
T
typhoonzero 已提交
136
                  trainer_id,
T
done  
typhoonzero 已提交
137 138 139 140 141
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
142 143
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
144
            to do parameter optimization. And the optimization graph will be put
145
            into a parameter server program.
T
done  
typhoonzero 已提交
146

147
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
148 149 150
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
151
                                    return value of Optimizer.minimize
T
done  
typhoonzero 已提交
152
            :type optimize_ops: list
T
typhoonzero 已提交
153 154 155 156
            :param params_grads: list of tuple(weight, gradient)
            :type params_grads: list
            :param trainer_id: one unique id for each trainer in a job.
            :type trainer_id: int
157
            :param program: program to optimize, default is default_main_program
T
typhoonzero 已提交
158
            :type program: Program
T
done  
typhoonzero 已提交
159 160
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
T
typhoonzero 已提交
161 162 163 164 165
            :param trainers: total number of workers/trainers in the job
            :type trainers: int
            :param split_method: A function to determin how to split variables
                to different servers equally.
            :type split_method: function
T
done  
typhoonzero 已提交
166
        """
T
typhoonzero 已提交
167
        assert (callable(split_method))
T
done  
typhoonzero 已提交
168 169
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
170
        self.program = program
T
done  
typhoonzero 已提交
171
        self.trainers = trainers
T
typhoonzero 已提交
172
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
173 174 175 176 177
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id

T
typhoonzero 已提交
178
        # steps to transpile:
179
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
180 181 182
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
183
        # 5. create new program for parameter server.
T
typhoonzero 已提交
184
        # 6. create parameter server program by split_method generated endpoint->VarBlock
185
        # 7. update startup_program, rename variables to variables with trainer_id
T
typhoonzero 已提交
186

T
typhoonzero 已提交
187
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
188 189

        # step1
T
typhoonzero 已提交
190 191
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
192
        # TODO: add split selected rows support
T
typhoonzero 已提交
193 194
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
195
        # step2
T
typhoonzero 已提交
196
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
197 198 199

        # step3
        send_inputs = []
T
typhoonzero 已提交
200
        send_outputs = []
T
typhoonzero 已提交
201 202 203 204
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
205 206
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
207 208 209
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
210 211
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
212
        eplist = split_method(send_inputs, pserver_endpoints)
213
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
214 215 216 217 218 219 220 221
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
222

T
typhoonzero 已提交
223 224 225 226 227 228
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
            psersistable=True,
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

229
        # create send_op
T
typhoonzero 已提交
230 231 232
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
233 234
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
235
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
236 237 238
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
239 240
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
241 242 243
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
244
                inputs={"X": splited_var},
T
typhoonzero 已提交
245
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
246
                attrs={"axis": 0})
T
typhoonzero 已提交
247

248 249 250 251 252 253 254 255 256
        # step 7
        startup_prog = default_startup_program()
        for varname in startup_prog.global_block().vars.keys():
            if varname in param_var_mapping and \
                len(param_var_mapping[varname]) == 1:
                new_var_name = "%s.trainer_%d" % \
                    (varname, self.trainer_id)
                startup_prog.global_block().rename_var(varname, new_var_name)

T
typhoonzero 已提交
257
    def _create_vars_from_blocklist(self, program, block_list):
258
        # Create respective variables using the block_list
T
typhoonzero 已提交
259
        block_map = dict()
T
typhoonzero 已提交
260
        var_mapping = dict()
T
typhoonzero 已提交
261 262 263 264 265 266
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
267
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
268
            if len(splited) == 1:
T
typhoonzero 已提交
269 270 271 272 273 274
                # rename var to the trainer_id var
                new_var_name = "%s.trainer_%d" % \
                    (orig_var.name, self.trainer_id)
                program.global_block().rename_var(varname, new_var_name)
                var_mapping[varname] = \
                    [program.global_block().var(new_var_name)]
T
typhoonzero 已提交
275
                continue
T
typhoonzero 已提交
276 277

            var_mapping[varname] = []
T
typhoonzero 已提交
278 279 280 281
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
282

T
typhoonzero 已提交
283
            for i, block in enumerate(splited):
T
typhoonzero 已提交
284
                size = block[1]
T
typhoonzero 已提交
285 286 287 288
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
289
                var = program.global_block().create_var(
T
typhoonzero 已提交
290 291
                    name="%s.block%d.trainer_%d" %
                    (varname, i, self.trainer_id),
T
typhoonzero 已提交
292 293
                    psersistable=False,
                    dtype=orig_var.dtype,
294
                    type=orig_var.type,
T
typhoonzero 已提交
295
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
296
                var_mapping[varname].append(var)
T
typhoonzero 已提交
297
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
298
        return var_mapping
T
done  
typhoonzero 已提交
299 300 301 302 303 304 305 306 307

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
308
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
309 310
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
311

T
typhoonzero 已提交
312
    def _append_split_op(self, program, gradblocks):
313
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
314 315
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
316 317
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
318
                continue
T
typhoonzero 已提交
319
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
320
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
321 322 323 324 325 326 327 328
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
329
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
330 331 332 333 334 335 336 337 338 339 340 341
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
342
        return var_mapping
T
done  
typhoonzero 已提交
343

T
typhoonzero 已提交
344
    def get_trainer_program(self):
T
typhoonzero 已提交
345
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
346 347
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
348

T
done  
typhoonzero 已提交
349
    def _create_var_for_trainers(self, block, var, trainers):
350
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
351 352 353 354 355 356
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
                psersistable=var.persistable,
                dtype=var.dtype,
357
                type=var.type,
T
done  
typhoonzero 已提交
358 359 360 361
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
362 363 364 365
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
366
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

389 390
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
391
        pserver_block = program.global_block()
T
typhoonzero 已提交
392
        new_inputs = dict()
T
typhoonzero 已提交
393 394
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
395
        for key in opt_op.input_names:
T
typhoonzero 已提交
396 397 398
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
399
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
400 401 402 403 404 405
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
406
                merged_var = pserver_block.vars[grad_block.name]
T
typhoonzero 已提交
407 408
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
409
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
410
                        pserver_block, grad_block, self.trainers)
411
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
412 413 414
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
415
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
416 417 418 419
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
420 421 422 423 424
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
425
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
426 427 428 429
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
430
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
431
                    name=param_block.name,
T
typhoonzero 已提交
432
                    persistable=True,
T
typhoonzero 已提交
433 434 435
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
436 437 438
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
T
typhoonzero 已提交
439
                new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
440

T
typhoonzero 已提交
441
        for key in opt_op.input_names:
442 443
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
444
                continue
T
typhoonzero 已提交
445
            var = self.program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
446 447 448 449
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
450
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
451 452 453 454 455
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
456

457
        # change output's ParamOut variable
T
typhoonzero 已提交
458 459
        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)
460
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
461

462
        optimize_block.append_op(
T
typhoonzero 已提交
463 464
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
465
            outputs=outputs,
T
typhoonzero 已提交
466 467
            attrs=opt_op.attrs)

468 469
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
470
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
471 472
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
473 474 475 476
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
477
            for var in varlist:
478 479
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
480 481 482 483 484 485 486 487
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

488 489 490 491 492 493 494 495 496 497 498
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

499
        optimize_block.append_op(
T
typhoonzero 已提交
500
            type=opt_op.type,
T
typhoonzero 已提交
501 502
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
503 504
            attrs=opt_op.attrs)

505 506 507 508
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
509 510 511 512 513
        op1_input_names = op1.desc.input_arg_names()
        op1_output_names = op1.desc.output_arg_names()

        op2_input_names = op2.desc.input_arg_names()
        op2_output_names = op2.desc.output_arg_names()
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
T
typhoonzero 已提交
534 535
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
536 537 538 539 540 541 542
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
543
        if op.input("Param") in param_names:
544 545 546
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
547
                param = op.input("Param")[0]
T
typhoonzero 已提交
548
                if same_or_split_var(n, param) and n != param:
549 550 551 552
                    return True
            return False
        return False

553
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
554
        """
555
        Get pserver side program using the endpoint
T
typhoonzero 已提交
556 557 558 559 560 561 562 563

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
T
typhoonzero 已提交
564
        recv_inputs = []
T
typhoonzero 已提交
565
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
566
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
567 568 569 570 571 572
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
T
typhoonzero 已提交
573 574 575 576 577 578 579
                # change client side var name to origin name by
                # removing ".trainer_%d" suffix
                suff_idx = v.name.find(".trainer_")
                if suff_idx >= 0:
                    orig_var_name = v.name[:suff_idx]
                var = pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (orig_var_name, trainer_id),
T
typhoonzero 已提交
580 581 582
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
583
                recv_inputs.append(var)
T
typhoonzero 已提交
584
        # step6
585
        optimize_block = pserver_program.create_block(0)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        # step 6.1
        # Create a union-find data struct by optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 6.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 6.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
        for _, op in enumerate(self.optimize_ops):
            for _, opt_op in enumerate(opt_op_on_pserver):
                if ufind.is_connected(op, opt_op):
                    if self._is_opt_op(op):
                        self._append_pserver_ops(optimize_block, op, endpoint)
                    else:
                        self._append_pserver_non_opt_ops(optimize_block, op)
                    break
610
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
611
        pserver_program.global_block().append_op(
612
            type="listen_and_serv",
T
typhoonzero 已提交
613
            inputs={'X': recv_inputs},
T
done  
typhoonzero 已提交
614 615
            outputs={},
            attrs={
616
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
617
                "endpoint": endpoint,
618
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
619 620 621
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
622

T
typhoonzero 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
647
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
648 649 650
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
651
        were split to several blocks.
T
typhoonzero 已提交
652 653 654 655 656 657 658 659
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
660
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
661 662 663
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
664 665
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
666
        created_var_map = dict()
Y
update  
yi.wu 已提交
667
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
668 669
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
670
                persistable=var.persistable,
T
typhoonzero 已提交
671 672 673 674 675 676
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
677
            new_inputs = dict()
T
typhoonzero 已提交
678
            new_outputs = dict()
Y
update  
yi.wu 已提交
679 680
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
681 682
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
683
                if newname:
Y
update  
yi.wu 已提交
684
                    op_on_pserver = True
T
typhoonzero 已提交
685
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
686
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
687
                    op_on_pserver = True
T
typhoonzero 已提交
688 689 690 691
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
692

T
typhoonzero 已提交
693
            if op_on_pserver:
T
typhoonzero 已提交
694 695 696
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
697
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
698 699
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
700
                    inputs=new_inputs,
T
typhoonzero 已提交
701 702 703
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog