distribute_transpiler.py 26.4 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
T
done  
typhoonzero 已提交
16 17 18 19
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
T
typhoonzero 已提交
20
from distributed_spliter import *
T
typhoonzero 已提交
21
import math
22
from . import core
T
done  
typhoonzero 已提交
23 24


T
typhoonzero 已提交
25 26 27 28 29 30
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
31

T
typhoonzero 已提交
32 33
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
class UnionFind(object):
    """ Union-find data struct.
    
    Union-find is a data struct that keeps track of a set of elements partitioned
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


87 88 89 90
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
91 92 93 94 95
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
96
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
97 98
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
99

T
typhoonzero 已提交
100 101
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
102 103
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
T
typhoonzero 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
122
        # update split_count after aligning
T
typhoonzero 已提交
123 124 125 126 127 128 129 130 131
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
132 133 134 135 136 137 138 139 140
class DistributeTranspiler:
    def transpile(self,
                  optimize_ops,
                  params_grads,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=round_robin):
        """
141 142
            Transpile the program to distributed data-parallelism programs.
            The main_program will be transformed to use a remote parameter server
T
done  
typhoonzero 已提交
143
            to do parameter optimization. And the optimization graph will be put
144
            into a parameter server program.
T
done  
typhoonzero 已提交
145

146
            Use different methods to split trainable variables to different
T
done  
typhoonzero 已提交
147 148 149 150 151
            parameter servers.

            :param optimize_ops: op list of optimization, should be the
                                 return value of Optimizer.minimize
            :type optimize_ops: list
152
            :param program: program to optimize, default is default_main_program
T
done  
typhoonzero 已提交
153 154 155 156
            :param pservers: parameter server endpoints like "m1:6174,m2:6174"
            :type pservers: string
            :return: return a list of programs
        """
T
typhoonzero 已提交
157
        assert (callable(split_method))
T
done  
typhoonzero 已提交
158 159
        if program is None:
            program = default_main_program()
T
typhoonzero 已提交
160
        self.program = program
T
done  
typhoonzero 已提交
161
        self.trainers = trainers
T
typhoonzero 已提交
162
        self.optimize_ops = optimize_ops
T
typhoonzero 已提交
163
        # steps to transpile:
164
        # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
T
typhoonzero 已提交
165 166 167
        # 2. modify trainer program add split_op to each Grad.
        # 3. append send_op to trainer.
        # 4. append concat_op to trainer to update local weights.
168
        # 5. create new program for parameter server.
T
typhoonzero 已提交
169
        # 6. create parameter server program by split_method generated endpoint->VarBlock
T
typhoonzero 已提交
170

T
typhoonzero 已提交
171
        pserver_endpoints = pservers.split(",")
T
typhoonzero 已提交
172 173

        # step1
T
typhoonzero 已提交
174 175
        param_list = [pg[0] for pg in params_grads]
        grad_list = [pg[1] for pg in params_grads]
T
typhoonzero 已提交
176
        # TODO: add split selected rows support
T
typhoonzero 已提交
177 178
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
T
typhoonzero 已提交
179
        # step2
T
typhoonzero 已提交
180
        grad_var_mapping = self._append_split_op(program, grad_blocks)
T
typhoonzero 已提交
181 182 183

        # step3
        send_inputs = []
T
typhoonzero 已提交
184
        send_outputs = []
T
typhoonzero 已提交
185 186 187 188
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])

T
typhoonzero 已提交
189 190
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
T
typhoonzero 已提交
191 192 193
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
194 195
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
196
        eplist = split_method(send_inputs, pserver_endpoints)
197
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
198 199 200 201 202 203 204 205
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
206

T
typhoonzero 已提交
207 208
        rpc_client_var = program.global_block().create_var(
            name="RPC_CLIENT_VAR",
T
typhoonzero 已提交
209
            persistable=True,
T
typhoonzero 已提交
210 211 212
            dtype='float32',  # dtype and shape is not used in fact
            shape=[0])

213
        # create send_op
T
typhoonzero 已提交
214 215 216
        send_op = program.global_block().append_op(
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
217 218
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
T
typhoonzero 已提交
219
            attrs={"endpoints": pserver_endpoints,
T
typhoonzero 已提交
220 221 222
                   "epmap": eplist})
        # step4
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
223 224
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
225 226 227
            orig_param = program.global_block().vars[varname]
            concat = program.global_block().append_op(
                type="concat",
T
typhoonzero 已提交
228
                inputs={"X": splited_var},
T
typhoonzero 已提交
229
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
230
                attrs={"axis": 0})
T
typhoonzero 已提交
231 232

    def _create_vars_from_blocklist(self, program, block_list):
233
        # Create respective variables using the block_list
T
typhoonzero 已提交
234
        block_map = dict()
T
typhoonzero 已提交
235
        var_mapping = dict()
T
typhoonzero 已提交
236 237 238 239 240 241 242
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
243 244 245 246
            var_mapping[varname] = []
            if len(splited) == 1:
                var_mapping[varname] = [orig_var]
                continue
T
typhoonzero 已提交
247 248 249 250
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
251

T
typhoonzero 已提交
252
            for i, block in enumerate(splited):
T
typhoonzero 已提交
253
                size = block[1]
T
typhoonzero 已提交
254 255 256 257
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
258 259
                var = program.global_block().create_var(
                    name="%s.block%d" % (varname, i),
T
typhoonzero 已提交
260
                    persistable=False,
T
typhoonzero 已提交
261
                    dtype=orig_var.dtype,
262
                    type=orig_var.type,
T
typhoonzero 已提交
263
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
264
                var_mapping[varname].append(var)
T
typhoonzero 已提交
265
        return var_mapping
T
done  
typhoonzero 已提交
266 267 268 269 270 271 272 273 274

    def _clone_var(self, block, var):
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
275
            # HACK: let all param in pserver be persistable so the child
T
typhoonzero 已提交
276 277
            # program in recv can get them
            persistable=True)
T
done  
typhoonzero 已提交
278

T
typhoonzero 已提交
279
    def _append_split_op(self, program, gradblocks):
280
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
281 282
        var_mapping = self._create_vars_from_blocklist(program, gradblocks)
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
283 284
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
285
                continue
T
typhoonzero 已提交
286
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
287
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
288 289 290 291 292 293 294 295
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
296
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
297 298 299 300 301 302 303 304 305 306 307 308
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
309
        return var_mapping
T
done  
typhoonzero 已提交
310

T
typhoonzero 已提交
311
    def get_trainer_program(self):
T
typhoonzero 已提交
312
        # remove optimize ops and add a send op to main_program
T
typhoonzero 已提交
313 314
        self.program.global_block().delete_ops(self.optimize_ops)
        return self.program
T
typhoonzero 已提交
315

T
done  
typhoonzero 已提交
316
    def _create_var_for_trainers(self, block, var, trainers):
317
        # For each trainer, create the necessary variables
T
done  
typhoonzero 已提交
318 319 320 321
        var_list = []
        for i in xrange(trainers):
            var_each = block.create_var(
                name="%s.trainer_%d" % (var.name, i),
T
typhoonzero 已提交
322
                persistable=var.persistable,
T
done  
typhoonzero 已提交
323
                dtype=var.dtype,
324
                type=var.type,
T
done  
typhoonzero 已提交
325 326 327 328
                shape=var.shape)
            var_list.append(var_each)
        return var_list

T
typhoonzero 已提交
329 330 331 332
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
333
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

356 357
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint):
        program = optimize_block.program
T
typhoonzero 已提交
358
        pserver_block = program.global_block()
T
typhoonzero 已提交
359
        new_inputs = dict()
T
typhoonzero 已提交
360 361
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
362
        for key in opt_op.input_names:
T
typhoonzero 已提交
363 364 365
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
366
                    if same_or_split_var(g.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
367 368 369 370 371 372
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
373
                merged_var = pserver_block.vars[grad_block.name]
T
typhoonzero 已提交
374 375
                # append merging ops if trainers > 1
                if self.trainers > 1:
T
done  
typhoonzero 已提交
376
                    vars2merge = self._create_var_for_trainers(
T
typhoonzero 已提交
377
                        pserver_block, grad_block, self.trainers)
378
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
379 380 381
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
382
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
383 384 385 386
                        type="scale",
                        inputs={"X": merged_var},
                        outputs={"Out": merged_var},
                        attrs={"scale": 1.0 / float(self.trainers)})
T
typhoonzero 已提交
387 388 389 390 391
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
392
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
393 394 395 396
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
397
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
398
                    name=param_block.name,
T
typhoonzero 已提交
399
                    persistable=True,
T
typhoonzero 已提交
400 401 402
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
403 404 405
            elif key == "LearningRate":
                # leraning rate variable has already be created by non-optimize op,
                # don't create it once again.
T
typhoonzero 已提交
406
                new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
407

T
typhoonzero 已提交
408
        for key in opt_op.input_names:
409 410
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
411
                continue
T
typhoonzero 已提交
412
            var = self.program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
413 414 415 416
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
417
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
418 419 420 421 422
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
423

424
        # change output's ParamOut variable
T
typhoonzero 已提交
425 426
        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)
427
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
428

429
        optimize_block.append_op(
T
typhoonzero 已提交
430 431
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
432
            outputs=outputs,
T
typhoonzero 已提交
433 434
            attrs=opt_op.attrs)

435 436
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
437
        # Append the ops for parameters that do not need to be optimized/updated
T
typhoonzero 已提交
438 439
        inputs = self._get_input_map_from_op(self.program.global_block().vars,
                                             opt_op)
440 441 442 443
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
444
            for var in varlist:
445 446
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
447 448 449 450 451 452 453 454
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

        outputs = self._get_output_map_from_op(self.program.global_block().vars,
                                               opt_op)

455 456 457 458 459 460 461 462 463 464 465
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
                program.global_block().create_var(
                    name=var.name,
                    persistable=var.persistable,
                    dtype=var.dtype,
                    shape=var.shape)

466
        optimize_block.append_op(
T
typhoonzero 已提交
467
            type=opt_op.type,
T
typhoonzero 已提交
468 469
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
470 471
            attrs=opt_op.attrs)

472 473 474 475
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
476 477 478 479 480
        op1_input_names = op1.desc.input_arg_names()
        op1_output_names = op1.desc.output_arg_names()

        op2_input_names = op2.desc.input_arg_names()
        op2_output_names = op2.desc.output_arg_names()
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc... 
T
typhoonzero 已提交
501 502
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
503 504 505 506 507 508 509
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
510
        if op.input("Param") in param_names:
511 512 513
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
514 515
                param = op.input("Param")[0]
                if same_or_split_var(n, param) and n != param:
516 517 518 519
                    return True
            return False
        return False

520
    def get_pserver_program(self, endpoint):
T
typhoonzero 已提交
521
        """
522
        Get pserver side program using the endpoint
T
typhoonzero 已提交
523 524 525 526 527 528 529 530 531

        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch. For each pserver endpoint, server side
        program must be a sub-set of the original optimization program.
        """
        # step5
        pserver_program = Program()
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
532
            self._clone_var(pserver_program.global_block(), v)
T
typhoonzero 已提交
533 534 535 536 537 538 539 540 541 542 543
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            pserver_program.global_block().create_var(
                name=v.name, persistable=True, dtype=v.dtype, shape=v.shape)
            for trainer_id in xrange(self.trainers):
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d" % (v.name, trainer_id),
                    persistable=True,
                    dtype=v.dtype,
                    shape=v.shape)
T
typhoonzero 已提交
544
        # step6
545
        optimize_block = pserver_program.create_block(0)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        # step 6.1
        # Create a union-find data struct by optimize ops,
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
        # step 6.2 
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
        # step 6.3
        # Iterate through the ops, and if an op and the optimize ops
        # which located on current pserver are in one set, then 
        # append it into the sub program.
        for _, op in enumerate(self.optimize_ops):
            for _, opt_op in enumerate(opt_op_on_pserver):
                if ufind.is_connected(op, opt_op):
                    if self._is_opt_op(op):
                        self._append_pserver_ops(optimize_block, op, endpoint)
                    else:
                        self._append_pserver_non_opt_ops(optimize_block, op)
                    break
570
        # Append the listen_and_serv op
T
done  
typhoonzero 已提交
571
        pserver_program.global_block().append_op(
572
            type="listen_and_serv",
T
typhoonzero 已提交
573
            inputs={},
T
done  
typhoonzero 已提交
574 575
            outputs={},
            attrs={
576
                "OptimizeBlock": optimize_block,
T
done  
typhoonzero 已提交
577
                "endpoint": endpoint,
T
typhoonzero 已提交
578 579 580 581 582 583 584 585
                "ParamList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["params"]
                ],
                "GradList": [
                    p.name
                    for p in self.param_grad_ep_mapping[endpoint]["grads"]
                ],
T
typhoonzero 已提交
586
                "Fanin": self.trainers
T
done  
typhoonzero 已提交
587 588 589
            })
        pserver_program.sync_with_cpp()
        return pserver_program
T
typhoonzero 已提交
590

T
typhoonzero 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    def _get_input_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

T
typhoonzero 已提交
615
    def get_startup_program(self, endpoint, pserver_program):
T
typhoonzero 已提交
616 617 618
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
619
        were split to several blocks.
T
typhoonzero 已提交
620 621 622 623 624 625 626 627
        """
        s_prog = Program()
        orig_s_prog = framework.default_startup_program()
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
628
                if same_or_split_var(pname, varname) and varname != pname:
T
typhoonzero 已提交
629 630 631
                    return pname, splited_param.shape
            return "", []

Y
update  
yi.wu 已提交
632 633
        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
T
typhoonzero 已提交
634
        created_var_map = dict()
Y
update  
yi.wu 已提交
635
        for _, var in pserver_vars.iteritems():
T
typhoonzero 已提交
636 637
            tmpvar = s_prog.global_block().create_var(
                name=var.name,
T
typhoonzero 已提交
638
                persistable=var.persistable,
T
typhoonzero 已提交
639 640 641 642 643 644
                dtype=var.dtype,
                shape=var.shape)
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
T
typhoonzero 已提交
645
            new_inputs = dict()
T
typhoonzero 已提交
646
            new_outputs = dict()
Y
update  
yi.wu 已提交
647 648
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
T
typhoonzero 已提交
649 650
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
T
typhoonzero 已提交
651
                if newname:
Y
update  
yi.wu 已提交
652
                    op_on_pserver = True
T
typhoonzero 已提交
653
                    new_outputs[key] = created_var_map[newname]
T
typhoonzero 已提交
654
                elif op.output(key)[0] in pserver_vars:
T
typhoonzero 已提交
655
                    op_on_pserver = True
T
typhoonzero 已提交
656 657 658 659
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)
Y
update  
yi.wu 已提交
660

T
typhoonzero 已提交
661
            if op_on_pserver:
T
typhoonzero 已提交
662 663 664
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
T
typhoonzero 已提交
665
                    op.attrs["shape"] = new_outputs["Out"].shape
T
typhoonzero 已提交
666 667
                s_prog.global_block().append_op(
                    type=op.type,
T
typhoonzero 已提交
668
                    inputs=new_inputs,
T
typhoonzero 已提交
669 670 671
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog