jit_kernel_exp.cc 13.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>  // for exp
T
tensor-tang 已提交
17 18
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
19 20 21 22 23

#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

28 29 30 31
#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
32 33 34 35 36 37
namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

T
tensor-tang 已提交
38
// TODO(TJ): move refer codes to one file
T
tensor-tang 已提交
39
// Refer code only focus on correctness
T
tensor-tang 已提交
40 41 42 43 44 45 46
template <typename T>
void VExpRefer(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = std::exp(x[i]);
  }
}

T
tensor-tang 已提交
47 48
template <typename T>
void VSigmoidRefer(const T* x, T* y, int n) {
T
tensor-tang 已提交
49
  // y = 1 / (1 + e^-x)
T
tensor-tang 已提交
50 51 52 53 54 55 56 57
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-tmp));
  }
}

T
tensor-tang 已提交
58 59 60 61 62 63 64 65 66 67 68 69
template <typename T>
void VTanhRefer(const T* x, T* y, int n) {
  // y = 2 * sigmoid(2x) - 1
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoidRefer(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}

T
tensor-tang 已提交
70
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
71
// try to use MKL to speedup
T
tensor-tang 已提交
72 73 74 75 76 77 78 79 80 81 82 83
template <typename T>
void VExpMKL(const T* x, T* y, int n);

template <>
void VExpMKL<float>(const float* x, float* y, int n) {
  platform::dynload::vsExp(n, x, y);
}

template <>
void VExpMKL<double>(const double* x, double* y, int n) {
  platform::dynload::vdExp(n, x, y);
}
T
tensor-tang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97

template <typename T>
void VSigmoidMKL(const T* x, T* y, int n) {
  const T min = SIGMOID_THRESHOLD_MIN;
  const T max = SIGMOID_THRESHOLD_MAX;
  for (int i = 0; i < n; ++i) {
    y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
    y[i] = static_cast<T>(0) - y[i];
  }
  VExpMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
  }
}
T
tensor-tang 已提交
98 99 100 101 102 103 104 105 106 107 108

template <typename T>
void VTanhMKL(const T* x, T* y, int n) {
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * x[i];
  }
  VSigmoidMKL(y, y, n);
  for (int i = 0; i < n; ++i) {
    y[i] = static_cast<T>(2) * y[i] - static_cast<T>(1);
  }
}
T
tensor-tang 已提交
109 110
#endif

T
tensor-tang 已提交
111
/* VExp JitKernel */
T
tensor-tang 已提交
112
template <typename T>
T
tensor-tang 已提交
113 114
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
115 116 117 118
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VExpKernelImpl(int d) : VExpKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
119
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 70 * 8;
120 121
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::exp,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
122 123 124 125 126 127 128 129
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VExpMKL<T>;
      return;
T
tensor-tang 已提交
130
    }
T
tensor-tang 已提交
131 132 133
#endif
    this->Compute = VExpRefer<T>;
  }
T
tensor-tang 已提交
134

T
tensor-tang 已提交
135 136 137
#ifdef PADDLE_WITH_XBYAK

 private:
138
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
139
#endif
T
tensor-tang 已提交
140 141
};

T
tensor-tang 已提交
142 143 144
#ifdef PADDLE_WITH_XBYAK
template <>
bool VExpKernelImpl<float>::useJIT(int d) {
145
  return gen::VActJitCode::init(d, gen::operand_type::exp);
T
tensor-tang 已提交
146 147 148
}
#endif

T
tensor-tang 已提交
149
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
150 151 152 153
template <>
bool VExpKernelImpl<float>::useMKL(int d) {
  return d > 512;
}
T
tensor-tang 已提交
154

T
tensor-tang 已提交
155 156 157 158
template <>
bool VExpKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
159 160 161 162 163 164 165 166 167 168 169

#endif

/* VSigmoid JitKernel */
template <typename T>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
170
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 82 * 8;
171 172
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::sigmoid,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VSigmoidMKL<T>;
      return;
    }
#endif
    this->Compute = VSigmoidRefer<T>;
  }
T
tensor-tang 已提交
187

T
tensor-tang 已提交
188 189 190
#ifdef PADDLE_WITH_XBYAK

 private:
191
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
192 193 194 195 196 197
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VSigmoidKernelImpl<float>::useJIT(int d) {
198
  return gen::VActJitCode::init(d, gen::operand_type::sigmoid);
T
tensor-tang 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VSigmoidKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VSigmoidKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
212 213
#endif

T
tensor-tang 已提交
214 215 216 217 218 219 220 221
/* VTanh JitKernel */
template <typename T>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  JITKERNEL_DECLARE_STATIC_FUNC;
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
#ifdef PADDLE_WITH_XBYAK
    if (useJIT(d)) {
222
      size_t sz = 96 + d / YMM_FLOAT_BLOCK * 84 * 8;
223 224
      jitcode_.reset(new gen::VActJitCode(d, gen::operand_type::tanh,
                                          sz > 4096 ? sz : 4096));
T
tensor-tang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238
      this->Compute = jitcode_->getCode<void (*)(const T*, T*, int)>();
      return;
    }
#endif

#ifdef PADDLE_WITH_MKLML
    // strictly it's a better impl with MKL, then is refer
    if (useMKL(d)) {
      this->Compute = VTanhMKL<T>;
      return;
    }
#endif
    this->Compute = VTanhRefer<T>;
  }
T
tensor-tang 已提交
239

T
tensor-tang 已提交
240 241 242
#ifdef PADDLE_WITH_XBYAK

 private:
243
  std::unique_ptr<gen::VActJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
244 245 246 247 248 249
#endif
};

#ifdef PADDLE_WITH_XBYAK
template <>
bool VTanhKernelImpl<float>::useJIT(int d) {
250
  return gen::VActJitCode::init(d, gen::operand_type::tanh);
T
tensor-tang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
}
#endif

#ifdef PADDLE_WITH_MKLML
template <>
bool VTanhKernelImpl<float>::useMKL(int d) {
  return d > 512;
}

template <>
bool VTanhKernelImpl<double>::useMKL(int d) {
  return true;
}
#endif

T
tensor-tang 已提交
266
REGISTER_JITKERNEL(vexp, VExpKernel);
T
tensor-tang 已提交
267
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
268
REGISTER_JITKERNEL(vtanh, VTanhKernel);
269

T
tensor-tang 已提交
270
namespace detail {
271 272 273 274

#define ALIGN32 __attribute__((aligned(32)))

#define _PS256_CONST(Name, Val)                                      \
275
  static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
276 277 278
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
279
  static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
304
    imm_xmm_union u ALIGN32;                \
305 306 307 308 309 310 311
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
312
    imm_xmm_union u ALIGN32;                \
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

T
tensor-tang 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
#define AVXEXP_BASE                                                            \
  __m256 tmp = _mm256_setzero_ps(), fx;                                        \
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);                   \
  __m256i imm0;                                                                \
  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));       \
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));       \
  /* express exp(x) as exp(g + n*log(2)) */                                    \
  fx = _mm256_mul_ps(x,                                                        \
                     *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));  \
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));        \
  tmp = _mm256_floor_ps(fx);                                                   \
  /* if greater, substract 1 */                                                \
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);                            \
  mask = _mm256_and_ps(mask, one);                                             \
  fx = _mm256_sub_ps(tmp, mask);                                               \
  tmp = _mm256_mul_ps(fx,                                                      \
                      *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
  __m256 z = _mm256_mul_ps(                                                    \
      fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));             \
  x = _mm256_sub_ps(x, tmp);                                                   \
  x = _mm256_sub_ps(x, z);                                                     \
  z = _mm256_mul_ps(x, x);                                                     \
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);           \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));   \
  y = _mm256_mul_ps(y, z);                                                     \
  y = _mm256_add_ps(y, x);                                                     \
  y = _mm256_add_ps(y, one);                                                   \
  /* build 2^n */                                                              \
  imm0 = _mm256_cvttps_epi32(fx)

391
__m256 ExpAVX(__m256 x) {
T
tensor-tang 已提交
392
  AVXEXP_BASE;
393 394 395 396 397 398 399 400 401 402 403
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
T
tensor-tang 已提交
404
  AVXEXP_BASE;
405 406 407 408 409 410 411 412 413 414
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail
T
tensor-tang 已提交
415 416 417 418
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle