jit_kernel_exp.cc 26.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>  // for exp
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

/* VExp JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
37 38 39
  explicit VExpKernelImpl(int d) : VExpKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
40 41 42 43 44 45
      y[i] = std::exp(x[i]);
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
46 47 48 49 50
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VExpKernelImpl<float, isa, block>::Compute(const float* x, float* y) \
      const {                                                               \
    platform::dynload::vsExp(this->num_, x, y);                             \
T
tensor-tang 已提交
51 52
  }

T
tensor-tang 已提交
53 54 55 56 57
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VExpKernelImpl<double, isa, block>::Compute(const double* x, double* y) \
      const {                                                                  \
    platform::dynload::vdExp(this->num_, x, y);                                \
T
tensor-tang 已提交
58 59 60 61 62 63 64
  }
FOR_EACH_ISA(MKL_FLOAT, kLT8);
FOR_EACH_ISA(MKL_FLOAT, kGT8LT16);
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
namespace detail {

#ifdef __AVX__

#define ALIGN32 __attribute__((aligned(32)))

#define _PS256_CONST(Name, Val)                                      \
  static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
  static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
    imm_xmm_union u ALIGN32;                \
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
    imm_xmm_union u ALIGN32;                \
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

__m256 ExpAVX(__m256 x) {
  __m256 tmp = _mm256_setzero_ps(), fx;
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);
  __m256i imm0;

  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));

  /* express exp(x) as exp(g + n*log(2)) */
  fx = _mm256_mul_ps(x, *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));

  tmp = _mm256_floor_ps(fx);

  /* if greater, substract 1 */
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);
  mask = _mm256_and_ps(mask, one);
  fx = _mm256_sub_ps(tmp, mask);

  tmp =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1));
  __m256 z =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));
  x = _mm256_sub_ps(x, tmp);
  x = _mm256_sub_ps(x, z);
  z = _mm256_mul_ps(x, x);

  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, x);
  y = _mm256_add_ps(y, one);

  /* build 2^n */
  imm0 = _mm256_cvttps_epi32(fx);
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
  __m256 tmp = _mm256_setzero_ps(), fx;
T
tensor-tang 已提交
201
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  __m256i imm0;

  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));

  /* express exp(x) as exp(g + n*log(2)) */
  fx = _mm256_mul_ps(x, *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));

  tmp = _mm256_floor_ps(fx);

  /* if greater, substract 1 */
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);
  mask = _mm256_and_ps(mask, one);
  fx = _mm256_sub_ps(tmp, mask);

  tmp =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1));
  __m256 z =
      _mm256_mul_ps(fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));
  x = _mm256_sub_ps(x, tmp);
  x = _mm256_sub_ps(x, z);
  z = _mm256_mul_ps(x, x);
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));
  y = _mm256_mul_ps(y, x);
  y = _mm256_add_ps(y, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));
  y = _mm256_mul_ps(y, z);
  y = _mm256_add_ps(y, x);
  y = _mm256_add_ps(y, one);

  /* build 2^n */
  imm0 = _mm256_cvttps_epi32(fx);
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail

#define INTRI8_FLOAT(isa, expisa)                                          \
T
tensor-tang 已提交
254 255 256 257
  template <>                                                              \
  void VExpKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                              \
    __m256 tmp = _mm256_loadu_ps(x);                                       \
258
    _mm256_storeu_ps(y, expisa(tmp));                                      \
T
tensor-tang 已提交
259 260
  }

261
#define INTRI16_FLOAT(isa, expisa)                                          \
T
tensor-tang 已提交
262 263 264 265 266
  template <>                                                               \
  void VExpKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp0 = _mm256_loadu_ps(x);                                       \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                   \
267 268
    tmp0 = expisa(tmp0);                                                    \
    tmp1 = expisa(tmp1);                                                    \
T
tensor-tang 已提交
269 270
    _mm256_storeu_ps(y, tmp0);                                              \
    _mm256_storeu_ps(y + 8, tmp1);                                          \
T
tensor-tang 已提交
271 272 273
  }

#ifdef __AVX__
274 275
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
T
tensor-tang 已提交
276 277
#endif
#ifdef __AVX2__
278 279
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
280 281
#endif
#ifdef __AVX512F__
282 283
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
284 285 286 287 288 289 290 291 292 293
#endif
// TODO(TJ): eq16 test and complete avx512

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE

REGISTER_JITKERNEL(vexp, VExpKernel);

T
tensor-tang 已提交
294 295 296 297 298
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
T
tensor-tang 已提交
299
    this->num_ = d;
T
tensor-tang 已提交
300 301
    vexp_ = KernelPool::Instance().template Get<VExpKernel<T>>(d);
  }
T
tensor-tang 已提交
302
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
303 304
    const T min = SIGMOID_THRESHOLD_MIN;
    const T max = SIGMOID_THRESHOLD_MAX;
T
tensor-tang 已提交
305
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
306 307 308
      y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
      y[i] = static_cast<T>(0) - y[i];
    }
T
tensor-tang 已提交
309
    vexp_->Compute(y, y);
T
tensor-tang 已提交
310
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
311 312 313 314 315 316 317 318
      y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
    }
  }

 private:
  std::shared_ptr<const VExpKernel<T>> vexp_;
};

319
#define INTRI_SIGMOID(tmp, min, max, expisa)      \
320 321 322
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
323
  tmp = expisa(tmp);                              \
324 325 326
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)

327
#define INTRI8_FLOAT(isa, expisa)                                              \
T
tensor-tang 已提交
328 329 330
  template <>                                                                  \
  void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                                  \
T
tensor-tang 已提交
331 332
    /* TODO(TJ): try to use static const*/                                     \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                        \
T
tensor-tang 已提交
333 334
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                        \
    __m256 tmp = _mm256_loadu_ps(x);                                           \
335
    INTRI_SIGMOID(tmp, min, max, expisa);                                      \
T
tensor-tang 已提交
336
    _mm256_storeu_ps(y, tmp);                                                  \
337 338
  }

339
#define INTRI16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
340 341 342 343 344 345 346
  template <>                                                           \
  void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                 \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                               \
347 348
    INTRI_SIGMOID(tmp0, min, max, expisa);                              \
    INTRI_SIGMOID(tmp1, min, max, expisa);                              \
T
tensor-tang 已提交
349 350
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + 8, tmp1);                                      \
351 352
  }

353
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                     \
T
tensor-tang 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d)        \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->end_ = AVX_FLOAT_BLOCK;                                            \
    this->rest_ = d - this->end_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,     \
                                                         float* y) const {   \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    __m256 tmp = _mm256_loadu_ps(x);                                         \
369
    INTRI_SIGMOID(tmp, min, max, expisa);                                    \
T
tensor-tang 已提交
370 371 372 373 374 375 376 377 378 379 380
    _mm256_storeu_ps(y, tmp);                                                \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
381 382
  }

383
#define INTRI_GT16_FLOAT(isa, expisa)                                        \
T
tensor-tang 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d)           \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                       \
    this->end_ = d - this->rest_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x,        \
                                                      float* y) const {      \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
400
      INTRI_SIGMOID(tmp, min, max, expisa);                                  \
T
tensor-tang 已提交
401 402 403 404 405 406 407 408 409 410 411 412
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
413 414 415
  }

#ifdef __AVX__
416 417 418 419
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
420 421
#endif
#ifdef __AVX2__
422 423 424
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
// maybe use avx at gt8lt16 and gt16
425 426
#endif
#ifdef __AVX512F__
427 428 429
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
// maybe use avx2 at gt8lt16 and gt16
430 431 432 433 434 435
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
T
tensor-tang 已提交
436
#undef INTRI_VSIGMOID
437

T
tensor-tang 已提交
438
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
439

T
tensor-tang 已提交
440 441 442 443 444
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
T
tensor-tang 已提交
445
    this->num_ = d;
T
tensor-tang 已提交
446 447 448 449
    vscal_ = KernelPool::Instance().template Get<VScalKernel<T>>(d);
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<T>>(d);
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<T>>(d);
  }
T
tensor-tang 已提交
450
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
451
    vscal_->Compute(static_cast<T>(2), x, y);
T
tensor-tang 已提交
452
    vsigmoid_->Compute(y, y);
T
tensor-tang 已提交
453 454
    vscal_->Compute(static_cast<T>(2), y);
    vaddbias_->Compute(static_cast<T>(-1), y, y);
T
tensor-tang 已提交
455 456 457 458 459 460 461 462
  }

 private:
  std::shared_ptr<const VScalKernel<T>> vscal_;
  std::shared_ptr<const VSigmoidKernel<T>> vsigmoid_;
  std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
};

463
#define INTRI_VTANH(tmp, expisa)                           \
T
tensor-tang 已提交
464 465
  tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp);         \
  tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
466
  tmp = expisa(tmp);                                       \
T
tensor-tang 已提交
467 468 469 470
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);          \
  tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp);          \
  tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))

471
#define INTRI8_FLOAT(isa, expisa)                                           \
T
tensor-tang 已提交
472 473 474 475
  template <>                                                               \
  void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
476
    INTRI_VTANH(tmp, expisa);                                               \
T
tensor-tang 已提交
477
    _mm256_storeu_ps(y, tmp);                                               \
T
tensor-tang 已提交
478 479
  }

480
#define INTRI16_FLOAT(isa, expisa)                                           \
T
tensor-tang 已提交
481 482 483 484 485
  template <>                                                                \
  void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
486 487
    INTRI_VTANH(tmp0, expisa);                                               \
    INTRI_VTANH(tmp1, expisa);                                               \
T
tensor-tang 已提交
488 489
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
T
tensor-tang 已提交
490 491
  }

492
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d)               \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->end_ = AVX_FLOAT_BLOCK;                                             \
    this->rest_ = d - this->end_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,         \
                                                      float* y) const {       \
    __m256 tmp = _mm256_loadu_ps(x);                                          \
510
    INTRI_VTANH(tmp, expisa);                                                 \
T
tensor-tang 已提交
511 512 513
    _mm256_storeu_ps(y, tmp);                                                 \
    x += AVX_FLOAT_BLOCK;                                                     \
    y += AVX_FLOAT_BLOCK;                                                     \
T
tensor-tang 已提交
514
    vscal_->Compute(2.f, x, y);                                               \
T
tensor-tang 已提交
515
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
516 517
    vscal_->Compute(2.f, y);                                                  \
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
518 519
  }

520
#define INTRI_GT16_FLOAT(isa, expisa)                                         \
T
tensor-tang 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)                  \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                        \
    this->end_ = d - this->rest_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y)  \
      const {                                                                 \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                   \
      __m256 tmp = _mm256_loadu_ps(x + i);                                    \
539
      INTRI_VTANH(tmp, expisa);                                               \
T
tensor-tang 已提交
540 541 542 543
      _mm256_storeu_ps(y + i, tmp);                                           \
    }                                                                         \
    x += this->end_;                                                          \
    y += this->end_;                                                          \
T
tensor-tang 已提交
544
    vscal_->Compute(2.f, x, y);                                               \
T
tensor-tang 已提交
545
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
546 547
    vscal_->Compute(2.f, y);                                                  \
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
548 549 550
  }

#ifdef __AVX__
551 552 553 554
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
T
tensor-tang 已提交
555 556
#endif
#ifdef __AVX2__
557 558
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
559 560 561
// maybe use avx at gt8lt16 and gt16
#endif
#ifdef __AVX512F__
562 563
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
564 565 566 567 568 569 570 571 572
// maybe use avx at gt8lt16 and gt16
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH

T
tensor-tang 已提交
573
REGISTER_JITKERNEL(vtanh, VTanhKernel);
T
tensor-tang 已提交
574

T
tensor-tang 已提交
575
#undef JITKERNEL_NEW_ACT_IMPL
576

T
tensor-tang 已提交
577 578 579 580
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle