sparse_utils_kernel.cc 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
16

17 18 19
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
20
#include "paddle/phi/core/visit_type.h"
21
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
22

23
namespace phi {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
46
      phi::errors::InvalidArgument(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
72 73 74 75 76 77
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
78 79 80

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

81 82
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
83
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
84 85
  phi::DenseTensor indices =
      phi::Empty<int64_t>(dev_ctx, {sparse_dim, non_zero_num});
86
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
87 88
  int64_t* indices_data = indices.data<int64_t>();
  T* values_data = values.data<T>();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

109 110 111 112
template <typename T, typename IntT>
void SparseCsrToCooCPUKernel(const CPUContext& dev_ctx,
                             const SparseCsrTensor& x,
                             SparseCooTensor* out) {
113
  const DDim& x_dims = x.dims();
114 115 116 117
  const int64_t non_zero_num = x.cols().numel();
  const auto& csr_crows = x.crows();
  const auto& csr_cols = x.cols();
  const auto& csr_values = x.values();
118 119
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
120 121 122 123 124 125
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
126 127 128 129 130 131
  phi::DenseTensor indices =
      phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  phi::DenseTensor values = phi::Empty<T>(dev_ctx, {non_zero_num});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
132
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
133 134
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.data<T>();
135 136 137 138 139 140 141

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
142
      for (IntT j = csr_crows_data[b * (rows + 1) + i];
143 144 145 146 147 148 149 150 151 152 153
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

154
  memcpy(coo_cols_data, csr_cols_data, sizeof(IntT) * non_zero_num);
155 156 157 158
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

159
template <typename T, typename Context>
160 161 162
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
163
  PD_VISIT_BASE_INTEGRAL_TYPES(
164
      x.crows().dtype(), "SparseCsrToCooCPUKernel", ([&] {
165 166 167 168 169 170 171 172
        SparseCsrToCooCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename T, typename IntT>
void SparseCooToCsrCPUKernel(const CPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             SparseCsrTensor* out) {
173 174 175 176
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
177
                    phi::errors::InvalidArgument(
178 179 180 181 182 183 184
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

185 186 187
  phi::DenseTensor crows;
  crows.Resize({batchs * (rows + 1)});
  IntT* csr_crows_data = dev_ctx.template Alloc<IntT>(&crows);
Z
zyfncg 已提交
188

189 190 191
  phi::DenseTensor cols;
  cols.Resize({non_zero_num});
  IntT* csr_cols_data = dev_ctx.template Alloc<IntT>(&cols);
Z
zyfncg 已提交
192

193 194 195
  phi::DenseTensor values;
  values.Resize({non_zero_num});
  T* csr_values_data = dev_ctx.template Alloc<T>(&values);
196

197 198
  const auto& coo_indices = x.indices();
  const auto& coo_values = x.values();
199 200
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
Z
zhangkaihuo 已提交
201
      x_dims.size() == 2 ? batchs_ptr : batchs_ptr + non_zero_num;
202
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
203 204 205 206 207 208
  const T* coo_values_data = coo_values.data<T>();

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
209 210 211 212 213
        const int start = batchs_ptr[i];
        const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
        for (int j = start; j < end; j++) {
          offsets[j] = i + 1;
        }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
232
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
233 234 235
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
236
    for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1; i++) {
237 238
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
Z
zhangkaihuo 已提交
239 240 241
    if (batch_non_zero_num == 0) {
      memset(csr_crows_data + b * (rows + 1), 0, sizeof(IntT) * (rows + 1));
    }
242 243
  }

244
  memcpy(csr_cols_data, coo_cols_data, sizeof(IntT) * non_zero_num);
245
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
246
  out->SetMember(crows, cols, values, x_dims);
247 248
}

Z
zhangkaihuo 已提交
249
template <typename T, typename Context>
250 251 252
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
253
  PD_VISIT_BASE_INTEGRAL_TYPES(
254
      x.indices().dtype(), "SparseCooToCsrCPUKernel", ([&] {
255 256 257 258 259 260 261 262
        SparseCooToCsrCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename T, typename IntT>
void SparseCooToDenseCPUKernel(const CPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               DenseTensor* out) {
Z
zhangkaihuo 已提交
263 264
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
265 266
  const auto indices = x.indices();
  const auto values = x.values();
Z
zhangkaihuo 已提交
267 268 269 270 271
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
Z
zhangkaihuo 已提交
272
  const int64_t dense_dim = x.dense_dim();
Z
zhangkaihuo 已提交
273 274

  const T* x_data = values.data<T>();
275 276
  *out = phi::Empty(dev_ctx,
                    DenseTensorMeta(x.dtype(), x.dims(), x.values().layout()));
Z
zhangkaihuo 已提交
277
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
293
      index += indices.data<IntT>()[j * non_zero_num + i] * sparse_offsets[j];
Z
zhangkaihuo 已提交
294 295 296 297 298 299 300 301
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

302 303 304 305
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
306
  PD_VISIT_BASE_INTEGRAL_TYPES(
307
      x.indices().dtype(), "SparseCooToDenseCPUKernel", ([&] {
308 309 310 311
        SparseCooToDenseCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

312
}  // namespace sparse
313
}  // namespace phi
314

315
PD_REGISTER_KERNEL(dense_to_sparse_coo,
316 317
                   CPU,
                   ALL_LAYOUT,
318
                   phi::sparse::DenseToSparseCooKernel,
319 320 321 322 323 324 325 326
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
327

328
PD_REGISTER_KERNEL(sparse_csr_to_coo,
329 330
                   CPU,
                   ALL_LAYOUT,
331
                   phi::sparse::SparseCsrToCooKernel,
332 333 334 335 336 337 338 339
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
340

341
PD_REGISTER_KERNEL(sparse_coo_to_csr,
342 343
                   CPU,
                   ALL_LAYOUT,
344
                   phi::sparse::SparseCooToCsrKernel,
345 346
                   float,
                   double,
347
                   phi::dtype::float16,
348 349 350 351 352 353
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

354
PD_REGISTER_KERNEL(dense_to_sparse_csr,
355 356
                   CPU,
                   ALL_LAYOUT,
357
                   phi::sparse::DenseToSparseCsrKernel,
358 359
                   float,
                   double,
360
                   phi::dtype::float16,
361 362 363 364 365
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
366

367
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
368 369
                   CPU,
                   ALL_LAYOUT,
370
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
371 372
                   float,
                   double,
373
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
374 375 376 377 378 379
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

380
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
381 382
                   CPU,
                   ALL_LAYOUT,
383
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
384 385
                   float,
                   double,
386
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
387 388 389 390 391
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

PD_REGISTER_KERNEL(coo_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
422 423 424 425 426 427 428 429 430 431 432 433

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}