sparse_utils_kernel.cc 14.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
16

17 18 19
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
20
#include "paddle/phi/core/visit_type.h"
21
#include "paddle/phi/kernels/funcs/sparse/common_shape.h"
22

23
namespace phi {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
46
      phi::errors::InvalidArgument(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();
72 73 74 75 76 77
  PADDLE_ENFORCE_LE(sparse_dim,
                    x_dims.size(),
                    phi::errors::InvalidArgument(
                        "sparse_dim must be less than the size of x.dims()"));
  PADDLE_ENFORCE_GT(
      sparse_dim, 0, phi::errors::InvalidArgument("sparse_dim must be >0"));
78 79 80

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

81 82
  const auto values_dims =
      phi::funcs::sparse::InferDenseDims(x_dims, sparse_dim, non_zero_num);
83
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
84 85
  phi::DenseTensor indices =
      phi::Empty<int64_t>(dev_ctx, {sparse_dim, non_zero_num});
86
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
87 88
  int64_t* indices_data = indices.data<int64_t>();
  T* values_data = values.data<T>();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

109 110 111 112
template <typename T, typename IntT>
void SparseCsrToCooCPUKernel(const CPUContext& dev_ctx,
                             const SparseCsrTensor& x,
                             SparseCooTensor* out) {
113 114 115 116 117
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
118 119
  const IntT* csr_crows_data = csr_crows.data<IntT>();
  const IntT* csr_cols_data = csr_cols.data<IntT>();
120 121 122 123 124 125
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
126 127 128 129 130 131
  phi::DenseTensor indices =
      phi::Empty<IntT>(dev_ctx, {sparse_dim, non_zero_num});
  phi::DenseTensor values = phi::Empty<T>(dev_ctx, {non_zero_num});
  IntT* coo_indices = indices.data<IntT>();
  IntT* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  IntT* coo_rows_data =
132
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
133 134
  IntT* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.data<T>();
135 136 137 138 139 140 141

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
142
      for (IntT j = csr_crows_data[b * (rows + 1) + i];
143 144 145 146 147 148 149 150 151 152 153
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

154
  memcpy(coo_cols_data, csr_cols_data, sizeof(IntT) * non_zero_num);
155 156 157 158
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

159
template <typename T, typename Context>
160 161 162 163 164 165 166 167 168 169 170 171 172
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_crows().dtype(), "SparseCsrToCooCPUKernel", ([&] {
        SparseCsrToCooCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename T, typename IntT>
void SparseCooToCsrCPUKernel(const CPUContext& dev_ctx,
                             const SparseCooTensor& x,
                             SparseCsrTensor* out) {
173 174 175 176
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
177
                    phi::errors::InvalidArgument(
178 179 180 181 182 183 184
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

Z
zyfncg 已提交
185 186
  phi::DenseTensor non_zero_crows;
  non_zero_crows.Resize({batchs * (rows + 1)});
187
  IntT* csr_crows_data = dev_ctx.template Alloc<IntT>(&non_zero_crows);
Z
zyfncg 已提交
188 189 190

  phi::DenseTensor non_zero_cols;
  non_zero_cols.Resize({non_zero_num});
191
  IntT* csr_cols_data = dev_ctx.template Alloc<IntT>(&non_zero_cols);
Z
zyfncg 已提交
192 193 194 195

  phi::DenseTensor non_zero_elements;
  non_zero_elements.Resize({non_zero_num});
  T* csr_values_data = dev_ctx.template Alloc<T>(&non_zero_elements);
196 197 198

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
199 200
  const IntT* batchs_ptr = coo_indices.data<IntT>();
  const IntT* coo_rows_data =
201
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
202
  const IntT* coo_cols_data = coo_rows_data + non_zero_num;
203 204 205 206 207 208
  const T* coo_values_data = coo_values.data<T>();

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
Z
zhangkaihuo 已提交
209 210 211 212 213
        const int start = batchs_ptr[i];
        const int end = i == non_zero_num - 1 ? batchs : batchs_ptr[i + 1];
        for (int j = start; j < end; j++) {
          offsets[j] = i + 1;
        }
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
232
      for (IntT j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
233 234 235
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
236
    for (IntT i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1; i++) {
237 238
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
Z
zhangkaihuo 已提交
239 240 241
    if (batch_non_zero_num == 0) {
      memset(csr_crows_data + b * (rows + 1), 0, sizeof(IntT) * (rows + 1));
    }
242 243
  }

244
  memcpy(csr_cols_data, coo_cols_data, sizeof(IntT) * non_zero_num);
245 246 247 248
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
249
template <typename T, typename Context>
250 251 252 253 254 255 256 257 258 259 260 261 262
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseCooToCsrCPUKernel", ([&] {
        SparseCooToCsrCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

template <typename T, typename IntT>
void SparseCooToDenseCPUKernel(const CPUContext& dev_ctx,
                               const SparseCooTensor& x,
                               DenseTensor* out) {
Z
zhangkaihuo 已提交
263 264 265 266 267 268 269 270 271
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
Z
zhangkaihuo 已提交
272
  const int64_t dense_dim = x.dense_dim();
Z
zhangkaihuo 已提交
273 274

  const T* x_data = values.data<T>();
Z
zhangkaihuo 已提交
275 276 277 278
  *out = phi::Empty(
      dev_ctx,
      DenseTensorMeta(x.dtype(), x.dims(), x.non_zero_elements().layout()));
  T* out_data = out->data<T>();
Z
zhangkaihuo 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
294
      index += indices.data<IntT>()[j * non_zero_num + i] * sparse_offsets[j];
Z
zhangkaihuo 已提交
295 296 297 298 299 300 301 302
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

303 304 305 306 307 308 309 310 311 312
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  PD_VISIT_INTEGRAL_TYPES(
      x.non_zero_indices().dtype(), "SparseCooToDenseCPUKernel", ([&] {
        SparseCooToDenseCPUKernel<T, data_t>(dev_ctx, x, out);
      }));
}

313
}  // namespace sparse
314
}  // namespace phi
315

316
PD_REGISTER_KERNEL(dense_to_sparse_coo,
317 318
                   CPU,
                   ALL_LAYOUT,
319
                   phi::sparse::DenseToSparseCooKernel,
320 321 322 323 324 325 326 327
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
328

329
PD_REGISTER_KERNEL(sparse_csr_to_coo,
330 331
                   CPU,
                   ALL_LAYOUT,
332
                   phi::sparse::SparseCsrToCooKernel,
333 334 335 336 337 338 339 340
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
341

342
PD_REGISTER_KERNEL(sparse_coo_to_csr,
343 344
                   CPU,
                   ALL_LAYOUT,
345
                   phi::sparse::SparseCooToCsrKernel,
346 347
                   float,
                   double,
348
                   phi::dtype::float16,
349 350 351 352 353 354
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

355
PD_REGISTER_KERNEL(dense_to_sparse_csr,
356 357
                   CPU,
                   ALL_LAYOUT,
358
                   phi::sparse::DenseToSparseCsrKernel,
359 360
                   float,
                   double,
361
                   phi::dtype::float16,
362 363 364 365 366
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
367

368
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
369 370
                   CPU,
                   ALL_LAYOUT,
371
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
372 373
                   float,
                   double,
374
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
375 376 377 378 379 380
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

381
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
382 383
                   CPU,
                   ALL_LAYOUT,
384
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
385 386
                   float,
                   double,
387
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
388 389 390 391 392
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

PD_REGISTER_KERNEL(coo_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CooValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::CsrValuesKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
423 424 425 426 427 428 429 430 431 432 433 434

PD_REGISTER_KERNEL(sparse_coo_tensor,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::SparseCooTensorKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t) {}