sparse_utils_kernel.cc 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
20

21
namespace phi {
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
namespace sparse {

template <typename T>
inline bool IsZero(const T* data, const size_t n) {
  const T zero = static_cast<T>(0);
  for (size_t i = 0; i < n; i++) {
    if (data[i] != zero) {
      return false;
    }
  }
  return true;
}

// TODO(zhangkaihuo): implement a kernel to count the number of non-zero
// elements in tensor
template <typename T>
inline int64_t GetNonZeroNum(const DenseTensor& dense,
                             const int64_t sparse_dim) {
  const auto& dims = dense.dims();
  PADDLE_ENFORCE_GE(
      dims.size(),
      sparse_dim,
      paddle::platform::errors::InvalidArgument(
          "sparse_dim(%d) should be less than or equal to dense.dim(%d)",
          sparse_dim,
          dims.size()));

  auto dims_2d = flatten_to_2d(dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  const T* data = dense.data<T>();
  int64_t non_zero_num = 0;
  for (int64_t i = 0; i < rows; i++) {
    if (!IsZero(data + i * cols, cols)) {
      non_zero_num = non_zero_num + 1;
    }
  }
  return non_zero_num;
}

template <typename T, typename Context>
void DenseToSparseCooKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const int64_t sparse_dim,
                            SparseCooTensor* out) {
  const T* x_data = x.data<T>();
  const auto& x_dims = x.dims();

  int64_t non_zero_num = GetNonZeroNum<T>(x, sparse_dim);

  const auto place = dev_ctx.GetPlace();
  const auto values_dims = InferDenseDims(x_dims, sparse_dim, non_zero_num);
  DenseTensorMeta indices_meta(DataType::INT64,
                               {sparse_dim, static_cast<int64_t>(non_zero_num)},
                               DataLayout::NCHW);
  DenseTensorMeta values_meta(x.meta().dtype, values_dims, x.meta().layout);
79 80
  phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
  int64_t* indices_data = indices.mutable_data<int64_t>(place);
  T* values_data = values.mutable_data<T>(place);

  auto dims_2d = flatten_to_2d(x_dims, sparse_dim);
  const int rows = dims_2d[0];
  const int cols = dims_2d[1];

  int index = 0;
  for (int i = 0; i < rows; i++) {
    if (!IsZero(x_data + i * cols, cols)) {
      int64_t sparse_index = i;
      for (int64_t j = sparse_dim - 1; j >= 0; j--) {
        indices_data[j * non_zero_num + index] = sparse_index % x_dims[j];
        sparse_index /= x_dims[j];
      }
      memcpy(values_data + index * cols, x_data + i * cols, cols * sizeof(T));
      ++index;
    }
  }
  out->SetMember(indices, values, x_dims, true);
}

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename T, typename Context>
void SparseCsrToCooKernel(const Context& dev_ctx,
                          const SparseCsrTensor& x,
                          SparseCooTensor* out) {
  const DDim& x_dims = x.dims();
  const int64_t non_zero_num = x.non_zero_cols().numel();
  const auto& csr_crows = x.non_zero_crows();
  const auto& csr_cols = x.non_zero_cols();
  const auto& csr_values = x.non_zero_elements();
  const int64_t* csr_crows_data = csr_crows.data<int64_t>();
  const int64_t* csr_cols_data = csr_cols.data<int64_t>();
  const T* csr_values_data = csr_values.data<T>();

  int64_t sparse_dim = 2;
  if (x_dims.size() == 3) {
    sparse_dim = 3;
  }
  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta indices_meta(
      DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
  DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout());
124 125
  phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
  phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  int64_t* coo_indices = indices.mutable_data<int64_t>(place);
  int64_t* batch_ptr = x_dims.size() == 2 ? nullptr : coo_indices;
  int64_t* coo_rows_data =
      x_dims.size() == 2 ? coo_indices : batch_ptr + non_zero_num;
  int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  T* coo_values_data = values.mutable_data<T>(place);

  int batch = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  int index = 0;
  for (int b = 0; b < batch; b++) {
    for (int i = 0; i < rows; i++) {
      for (int j = csr_crows_data[b * (rows + 1) + i];
           j < csr_crows_data[b * (rows + 1) + i + 1];
           j++) {
        coo_rows_data[index] = i;
        if (batch_ptr) {
          batch_ptr[index] = b;
        }
        ++index;
      }
    }
  }

  memcpy(coo_cols_data, csr_cols_data, sizeof(int64_t) * non_zero_num);
  memcpy(coo_values_data, csr_values_data, sizeof(T) * non_zero_num);
  out->SetMember(indices, values, x_dims, true);
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
template <typename T, typename Context>
void SparseCooToCsrKernel(const Context& dev_ctx,
                          const SparseCooTensor& x,
                          SparseCsrTensor* out) {
  const auto& x_dims = x.dims();
  bool valid = x_dims.size() == 2 || x_dims.size() == 3;
  PADDLE_ENFORCE_EQ(valid,
                    true,
                    paddle::platform::errors::InvalidArgument(
                        "SparseCsrTensor only support 2-D or 3-D matrix"));
  const int64_t non_zero_num = x.nnz();
  if (non_zero_num <= 0) return;

  int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
  int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];

  const auto place = dev_ctx.GetPlace();
  DenseTensorMeta crows_meta(
      DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW);
  DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW);
  DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout());
177 178
  phi::DenseTensor non_zero_crows(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
179
      std::move(crows_meta));
180 181
  phi::DenseTensor non_zero_cols(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
182
      std::move(cols_meta));
183 184
  phi::DenseTensor non_zero_elements(
      phi::make_intrusive<paddle::experimental::SharedStorage>(place),
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
      std::move(values_meta));
  int64_t* csr_crows_data = non_zero_crows.mutable_data<int64_t>(place);
  int64_t* csr_cols_data = non_zero_cols.mutable_data<int64_t>(place);
  T* csr_values_data = non_zero_elements.mutable_data<T>(place);

  const auto& coo_indices = x.non_zero_indices();
  const auto& coo_values = x.non_zero_elements();
  const int64_t* batchs_ptr = coo_indices.data<int64_t>();
  const int64_t* coo_rows_data =
      batchs == 1 ? batchs_ptr : batchs_ptr + non_zero_num;
  const int64_t* coo_cols_data = coo_rows_data + non_zero_num;
  const T* coo_values_data = coo_values.data<T>();

  if (!x.coalesced()) {
    // TODO(zhangkahuo): call coalesced() to distinct and sort the indices
  }

  std::vector<int64_t> offsets(batchs, 0);
  if (batchs > 1) {
    for (int i = 0; i < non_zero_num; i++) {
      if (i == non_zero_num - 1 || batchs_ptr[i] != batchs_ptr[i + 1]) {
        offsets[batchs_ptr[i]] = i + 1;
      }
    }
  } else {
    offsets[0] = non_zero_num;
  }

  for (int b = 0; b < batchs; b++) {
    if (offsets[b] == 0) continue;
    int batch_start = 0;
    int batch_non_zero_num = offsets[b];
    if (b > 0) {
      batch_start = offsets[b - 1];
      batch_non_zero_num -= batch_start;
    }
    auto* coo_rows_ptr = coo_rows_data + batch_start;
    for (int i = 0; i <= coo_rows_ptr[0]; i++) {
      csr_crows_data[b * (rows + 1) + i] = 0;
    }
    for (int64_t i = 1; i < batch_non_zero_num; i++) {
      for (int j = coo_rows_ptr[i - 1]; j < coo_rows_ptr[i]; j++) {
        csr_crows_data[b * (rows + 1) + j + 1] = i;
      }
    }
    for (int64_t i = coo_rows_ptr[batch_non_zero_num - 1] + 1; i < rows + 1;
         i++) {
      csr_crows_data[b * (rows + 1) + i] = batch_non_zero_num;
    }
  }

  memcpy(csr_cols_data, coo_cols_data, sizeof(int64_t) * non_zero_num);
  memcpy(csr_values_data, coo_values_data, sizeof(T) * non_zero_num);
  out->SetMember(non_zero_crows, non_zero_cols, non_zero_elements, x_dims);
}

Z
zhangkaihuo 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
template <typename T, typename Context>
void SparseCooToDenseKernel(const Context& dev_ctx,
                            const SparseCooTensor& x,
                            DenseTensor* out) {
  const auto non_zero_num = x.nnz();
  const auto dense_dims = x.dims();
  const auto indices = x.non_zero_indices();
  const auto values = x.non_zero_elements();
  const auto indices_dims = indices.dims();
  int64_t sparse_dim = indices_dims[0];
  if (indices_dims.size() == 1) {
    sparse_dim = 1;
  }
  const int64_t dense_dim = values.dims().size() - 1;

  const auto place = dev_ctx.GetPlace();
  const T* x_data = values.data<T>();
  T* out_data = out->mutable_data<T>(place);
  int64_t base_offset = 1;
  for (int64_t i = 0; i < dense_dim; i++) {
    base_offset *= dense_dims[sparse_dim + i];
  }
  std::vector<int64_t> sparse_offsets(sparse_dim);
  int64_t offset = 1;
  for (int i = sparse_dim - 1; i >= 0; i--) {
    sparse_offsets[i] = offset;
    offset *= dense_dims[i];
  }

  memset(out_data, 0, sizeof(T) * out->numel());
  for (auto i = 0; i < non_zero_num; i++) {
    int64_t index = 0;
    for (int j = 0; j < sparse_dim; j++) {
      index +=
          indices.data<int64_t>()[j * non_zero_num + i] * sparse_offsets[j];
    }

    for (int j = 0; j < base_offset; j++) {
      out_data[index * base_offset + j] = x_data[i * base_offset + j];
    }
  }
}

284
}  // namespace sparse
285
}  // namespace phi
286

287
PD_REGISTER_KERNEL(dense_to_sparse_coo,
288 289
                   CPU,
                   ALL_LAYOUT,
290
                   phi::sparse::DenseToSparseCooKernel,
291 292 293 294 295 296 297 298
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
299

300
PD_REGISTER_KERNEL(sparse_csr_to_coo,
301 302
                   CPU,
                   ALL_LAYOUT,
303
                   phi::sparse::SparseCsrToCooKernel,
304 305 306 307 308 309 310 311
                   float,
                   double,
                   paddle::float16,
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
312

313
PD_REGISTER_KERNEL(sparse_coo_to_csr,
314 315
                   CPU,
                   ALL_LAYOUT,
316
                   phi::sparse::SparseCooToCsrKernel,
317 318
                   float,
                   double,
319
                   phi::dtype::float16,
320 321 322 323 324 325
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

326
PD_REGISTER_KERNEL(dense_to_sparse_csr,
327 328
                   CPU,
                   ALL_LAYOUT,
329
                   phi::sparse::DenseToSparseCsrKernel,
330 331
                   float,
                   double,
332
                   phi::dtype::float16,
333 334 335 336 337
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}
Z
zhangkaihuo 已提交
338

339
PD_REGISTER_KERNEL(sparse_coo_to_dense,
Z
zhangkaihuo 已提交
340 341
                   CPU,
                   ALL_LAYOUT,
342
                   phi::sparse::SparseCooToDenseKernel,
Z
zhangkaihuo 已提交
343 344
                   float,
                   double,
345
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
346 347 348 349 350 351
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}

352
PD_REGISTER_KERNEL(sparse_csr_to_dense,
Z
zhangkaihuo 已提交
353 354
                   CPU,
                   ALL_LAYOUT,
355
                   phi::sparse::SparseCsrToDenseKernel,
Z
zhangkaihuo 已提交
356 357
                   float,
                   double,
358
                   phi::dtype::float16,
Z
zhangkaihuo 已提交
359 360 361 362 363
                   uint8_t,
                   int8_t,
                   int16_t,
                   int,
                   int64_t) {}