test_set_value_op.py 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test set_value op in static mode

import unittest
import numpy as np

import paddle
21
import paddle.fluid as fluid
22 23
from paddle.fluid.layer_helper import LayerHelper
from functools import reduce
24
from paddle.fluid.framework import _test_eager_guard
25 26 27


class TestSetValueBase(unittest.TestCase):
28

29 30 31 32
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
33
        self.set_shape()
34 35 36
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

37 38 39
    def set_shape(self):
        self.shape = [2, 3, 4]

40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
54

55 56
    def _run_static(self):
        paddle.enable_static()
57 58 59 60 61 62
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
63 64 65 66 67 68 69 70 71 72 73
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

W
wanghuancoder 已提交
74
    def func_test_api(self):
75 76
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
77
        self._get_answer()
78 79

        error_msg = "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
80 81 82 83
        self.assertTrue((self.data == static_out).all(),
                        msg=error_msg.format("static", self.data, static_out))
        self.assertTrue((self.data == dynamic_out).all(),
                        msg=error_msg.format("dynamic", self.data, dynamic_out))
84

W
wanghuancoder 已提交
85 86 87 88 89
    def test_api(self):
        with _test_eager_guard():
            self.func_test_api()
        self.func_test_api()

90

91 92
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
93
class TestSetValueItemInt(TestSetValueApi):
94

95 96 97 98 99 100 101
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


102 103
# 1.2 item is slice
# 1.2.1 step is 1
104
class TestSetValueItemSlice(TestSetValueApi):
105

106 107 108 109 110 111 112 113
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
114

115 116 117 118 119 120 121 122
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
123

124 125 126 127 128 129 130 131
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
132

133 134 135 136 137 138 139
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


140
class TestSetValueItemSlice5(TestSetValueApi):
141

142 143 144 145 146 147 148
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


149
class TestSetValueItemSliceInWhile(TestSetValueApi):
150

151
    def _call_setitem(self, x):
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

        i = paddle.zeros(shape=(1, ), dtype='int32')
        i, x = paddle.fluid.layers.while_loop(cond, body, [i, x])

    def _get_answer(self):
        self.data[0] = self.value


168 169
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
170

171 172 173 174 175 176 177 178 179 180 181
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
182

183 184 185 186 187 188 189 190 191 192 193
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
194

195 196 197 198 199 200 201 202
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
203

204 205 206 207 208 209 210 211 212
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
258

259 260 261 262 263 264 265 266 267 268 269 270 271
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


272
class TestSetValueItemEllipsis1(TestSetValueApi):
273

274 275 276 277 278 279 280 281
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
282

283 284 285 286 287 288 289 290
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
291

292 293 294 295 296 297 298 299
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
300

301 302 303 304 305 306 307
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


308 309
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
310

311 312 313 314 315 316 317 318 319
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
320

321 322 323 324 325 326 327 328 329 330
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
331

332 333 334 335 336 337 338 339 340 341
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
342

343 344 345 346 347 348 349 350 351 352
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
353

354 355 356 357 358 359 360 361 362 363
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
364

365 366 367 368 369 370 371 372 373 374 375 376
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
377 378
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
379

Z
zyfncg 已提交
380 381 382 383 384 385 386 387
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
388

Z
zyfncg 已提交
389 390 391 392 393 394 395 396
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
397

Z
zyfncg 已提交
398 399 400 401 402 403 404 405
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
406

Z
zyfncg 已提交
407 408 409 410 411 412 413 414
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
415

Z
zyfncg 已提交
416 417 418 419 420 421 422 423
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
424

Z
zyfncg 已提交
425 426 427 428 429 430 431 432
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
433

Z
zyfncg 已提交
434 435 436 437 438 439 440 441
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
442

Z
zyfncg 已提交
443 444 445 446 447 448 449 450
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
451

Z
zyfncg 已提交
452 453 454 455 456 457 458
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


459
class TestSetValueItemNone10(TestSetValueApi):
460

461 462 463 464 465 466 467
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
468 469
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
470

Z
zyfncg 已提交
471 472 473 474 475 476 477 478
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
479

Z
zyfncg 已提交
480 481 482 483 484 485 486 487
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
488

Z
zyfncg 已提交
489 490 491 492 493 494 495 496
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
497

Z
zyfncg 已提交
498 499 500 501 502 503 504 505 506
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
507

Z
zyfncg 已提交
508 509 510 511 512 513
    def _call_setitem(self, x):
        idx = paddle.assign(
            np.array([[False, True, False], [True, True, False]]))
        x[idx] = self.value

    def _get_answer(self):
514 515
        self.data[np.array([[False, True, False], [True, True,
                                                   False]])] = self.value
Z
zyfncg 已提交
516 517 518


class TestSetValueItemBool6(TestSetValueApi):
519

Z
zyfncg 已提交
520 521 522 523 524 525 526 527 528
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


529
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
530
# 2.1 value is int32, int64, float32, float64, bool
531 532 533


def create_test_value_int32(parent):
534

535
    class TestValueInt(parent):
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
556

557
    class TestValueInt(parent):
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
def create_test_value_fp16(parent):

    class TestValueInt(parent):

        def set_value(self):
            self.value = 3.7

        def set_dtype(self):
            self.dtype = "float16"

    cls_name = "{0}_{1}".format(parent.__name__, "Valuefp16")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp16(TestSetValueItemInt)
create_test_value_fp16(TestSetValueItemSlice)
create_test_value_fp16(TestSetValueItemSlice2)
create_test_value_fp16(TestSetValueItemSlice3)
create_test_value_fp16(TestSetValueItemSlice4)


599
def create_test_value_fp32(parent):
600

601
    class TestValueInt(parent):
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


621
def create_test_value_fp64(parent):
622

623
    class TestValueInt(parent):
624

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


643
def create_test_value_bool(parent):
644

645
    class TestValueInt(parent):
646

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


665
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
666
def create_test_value_numpy_int32(parent):
667

668
    class TestValueInt(parent):
669

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
689

690
    class TestValueInt(parent):
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
711

712
    class TestValueInt(parent):
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


732
def create_test_value_numpy_fp64(parent):
733

734
    class TestValueInt(parent):
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


754
def create_test_value_numpy_bool(parent):
755

756
    class TestValueInt(parent):
757

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
778

779
    class TestValueInt(parent):
780

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
804

805
    class TestValueInt(parent):
806

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
830

831
    class TestValueInt(parent):
832

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
856

857
    class TestValueInt(parent):
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
882

883
    class TestValueInt(parent):
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
909

910 911 912 913 914 915 916 917 918 919 920
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
921

922 923 924 925 926 927 928 929 930 931 932
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
933

934
    def set_value(self):
935 936
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3, 3]])  # shape is (3,4)
937 938 939 940 941 942 943 944 945

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
946

947
    def set_value(self):
948 949 950
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3,
                                3]]).astype(self.dtype)  # shape is (3,4)
951 952 953 954 955 956 957 958

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


959
class TestSetValueValueShape5(TestSetValueApi):
960

961 962 963 964 965 966 967 968 969 970 971 972 973
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


974 975
# 4. Test error
class TestError(TestSetValueBase):
976

977 978 979 980 981 982 983 984 985 986 987 988 989 990
    def _value_type_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor"
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
        ):
991
            y = paddle.ones(shape=self.shape, dtype="float16")
992 993 994
            y[0] = 1

    def _step_error(self):
995
        with self.assertRaisesRegexp(ValueError, "step can not be 0"):
996
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
997
            x[0:1:0] = self.value
998

999 1000 1001 1002 1003
    def _ellipsis_error(self):
        with self.assertRaisesRegexp(
                IndexError, "An index can only have a single ellipsis"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
1004 1005 1006 1007
        with self.assertRaisesRegexp(ValueError, "the start or end is None"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
1008

Z
zyfncg 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

1024 1025 1026 1027 1028 1029 1030
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
1031
        with self.assertRaises(ValueError):
1032 1033 1034
            exe.run(program)

    def test_error(self):
1035
        paddle.enable_static()
1036 1037 1038
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._step_error()
Z
zyfncg 已提交
1039 1040
            self._bool_list_error()
            self._bool_tensor_error()
1041 1042 1043
        self._broadcast_mismatch()


1044 1045 1046 1047
# 5. Test backward


class Model(paddle.nn.Layer):
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    def __init__(self):
        super(Model, self).__init__()
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')

1078 1079 1080
            label = paddle.static.data(name="label",
                                       shape=[4, 1],
                                       dtype='int64')
1081 1082 1083 1084 1085 1086 1087

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1088 1089
            cost = paddle.nn.functional.cross_entropy(input=prediction,
                                                      label=label)
1090 1091 1092 1093 1094 1095 1096 1097 1098
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1099 1100 1101 1102 1103
            feed={
                "x": x_np,
                "y": y_np,
                "label": label_np
            },
1104 1105 1106 1107
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"])

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1108 1109

    def func_test_dynamic(self):
1110 1111 1112 1113 1114 1115 1116
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1117
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
W
wanghuancoder 已提交
1118 1119

    def test_dynamic(self):
1120
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
W
wanghuancoder 已提交
1121 1122 1123
        with _test_eager_guard():
            self.func_test_dynamic()
        self.func_test_dynamic()
1124
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
1125 1126 1127


class TestGradientTruncated(unittest.TestCase):
1128

W
wanghuancoder 已提交
1129
    def func_test_consistent_with_competitor(self):
1130 1131 1132 1133 1134 1135 1136 1137 1138
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1139 1140
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([1, 2, 1, 3, 1, 4])
1141 1142 1143 1144 1145 1146 1147 1148 1149
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

        value_grad = np.array([[600., 606., 612., 618.]])
1150 1151 1152 1153 1154
        input_grad = np.array([[[[[[4., 32., 108., 256.]],
                                  [[500., 864., 1372., 2048.]],
                                  [[2916., 4000., 5324., 6912.]]]],
                                [[[[0., 0., 0., 0.]], [[0., 0., 0., 0.]],
                                  [[0., 0., 0., 0.]]]]]])
1155 1156 1157 1158
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1159
            format(input_grad, inps.grad.numpy()))
1160 1161 1162 1163
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
            format(value_grad, value.grad.numpy()))

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

        value_grad2 = np.array([600.])
1177 1178 1179 1180 1181 1182
        input_grad2 = np.array([[[4., 32., 108.], [0., 0., 0.]],
                                [[1372., 2048., 2916.], [4000., 5324., 6912.]],
                                [[8788., 10976., 13500.],
                                 [16384., 19652., 23328.]],
                                [[27436., 32000., 37044.],
                                 [42592., 48668., 55296.]]])
1183 1184 1185 1186
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1187
            format(input_grad, inps2.grad.numpy()))
1188 1189 1190 1191
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1192 1193 1194 1195 1196 1197 1198 1199 1200
            format(value_grad, value2.grad.numpy()))

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1201 1202
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([4, 3, 1, 1, 2, 1])
1203 1204 1205 1206 1207 1208 1209 1210 1211
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        input_grad = np.array([[[[[[0.], [0.]]]], [[[[0.], [0.]]]],
                                [[[[0.], [0.]]]]],
                               [[[[[1372.], [2048.]]]], [[[[2916.], [4000.]]]],
                                [[[[5324.], [6912.]]]]],
                               [[[[[8788.], [10976.]]]], [[[[13500.],
                                                            [16384.]]]],
                                [[[[19652.], [23328.]]]]],
                               [[[[[27436.], [32000.]]]],
                                [[[[37044.], [42592.]]]],
                                [[[[48668.], [55296.]]]]]])
1222 1223 1224 1225
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1226
            format(input_grad, inps.grad.numpy()))
1227 1228 1229 1230
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1231 1232 1233 1234 1235 1236 1237 1238 1239
            format(value_grad, value.grad.numpy()))

        #case 4: step >0
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1240 1241
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([2, 3, 1, 4, 1])
1242 1243 1244 1245 1246 1247 1248 1249 1250
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1251 1252
        input_grad = np.array([[[[[0.], [32.], [108.], [0.]]],
                                [[[0.], [864.], [1372.], [0.]]],
1253 1254 1255 1256
                                [[[0.], [4000.], [5324.], [0.]]]],
                               [[[[8788.], [10976.], [13500.], [16384.]]],
                                [[[19652.], [23328.], [27436.], [32000.]]],
                                [[[37044.], [42592.], [48668.], [55296.]]]]])
1257 1258 1259 1260
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1261
            format(input_grad, inps.grad.numpy()))
1262 1263 1264 1265
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
            format(value_grad, value.grad.numpy()))

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1284 1285
        value_grad = np.array([[200., 202., 204.,
                                206.], [208., 210., 212., 214.],
1286 1287 1288 1289 1290 1291
                               [216., 218., 220., 222.]])
        input_grad = np.array([[[0., 0., 0., 0.], [0., 0., 0., 0.],
                                [0., 0., 0., 0.]],
                               [[8788., 10976., 13500., 16384.],
                                [19652., 23328., 27436., 32000.],
                                [37044., 42592., 48668., 55296.]]])
1292 1293 1294 1295
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1296
            format(input_grad, inps.grad.numpy()))
1297 1298 1299 1300
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1301 1302
            format(value_grad, value.grad.numpy()))

1303 1304 1305 1306 1307 1308 1309 1310 1311
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1312 1313
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1314

W
wanghuancoder 已提交
1315 1316 1317 1318 1319
    def test_consistent_with_competitor(self):
        with _test_eager_guard():
            self.func_test_consistent_with_competitor()
        self.func_test_consistent_with_competitor()

1320 1321 1322 1323 1324 1325 1326 1327
    def test_static_graph(self):
        paddle.enable_static()

        to_string = lambda x, i, : x + '_' + str(i)
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
1328
            # test stop_gradient
1329 1330
            value.stop_gradient = True
            x.stop_gradient = False
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      5,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    0,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     -2,
                                                     force_cpu=True)
1343 1344 1345 1346

            inputs = {
                'Input': x,
                'ValueTensor': value,
1347 1348 1349 1350 1351 1352 1353 1354 1355
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1356 1357 1358 1359 1360
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1361 1362 1363 1364
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1365 1366 1367 1368 1369

            return y, value

        def op2(x):
            value = paddle.fluid.layers.fill_constant([1, 3, 2], "float32", 1)
1370
            # test stop_gradient
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
                'dtype': paddle.float32
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1387 1388 1389 1390
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs=attrs)
1391 1392 1393 1394 1395 1396 1397

            return y, value

        def op3(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
            x.stop_gradient = True
            value.stop_gradient = False
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      0,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    5,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     3,
                                                     force_cpu=True)
1410 1411 1412 1413

            inputs = {
                'Input': x,
                'ValueTensor': value,
1414 1415 1416 1417 1418 1419 1420 1421 1422
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1423 1424 1425 1426 1427
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1428 1429 1430 1431
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1432 1433 1434 1435 1436

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1437 1438 1439
            x = paddle.static.data(name=name_x,
                                   shape=array.shape,
                                   dtype='float32')
1440

1441 1442
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            # set_value_grad_op will not be run during backward.
            y, value = op(x)

            y2 = y + 1
            loss = paddle.fluid.layers.reduce_sum(y2)
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1467 1468
        array = np.arange(0, numel(input_shape),
                          dtype="float32").reshape(input_shape)
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1488
        paddle.disable_static()
1489 1490


Z
zyfncg 已提交
1491
class TestSetValueInplace(unittest.TestCase):
1492

Z
zyfncg 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
1504
            np.testing.assert_array_equal(b.numpy(), c.numpy())
Z
zyfncg 已提交
1505 1506 1507 1508 1509
            self.assertEqual(b.inplace_version, 1)

        paddle.enable_static()


1510
class TestSetValueInplaceLeafVar(unittest.TestCase):
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1542 1543
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1544 1545 1546
        paddle.enable_static()


1547 1548
if __name__ == '__main__':
    unittest.main()