test_set_value_op.py 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test set_value op in static mode

from __future__ import print_function

import unittest
import numpy as np

import paddle
23
import paddle.fluid as fluid
24 25
from paddle.fluid.layer_helper import LayerHelper
from functools import reduce
J
Jiabin Yang 已提交
26
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
27 28 29


class TestSetValueBase(unittest.TestCase):
30

31 32 33 34
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
35
        self.set_shape()
36 37 38
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

39 40 41
    def set_shape(self):
        self.shape = [2, 3, 4]

42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
56

57 58
    def _run_static(self):
        paddle.enable_static()
59 60 61 62 63 64
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
65 66 67 68 69 70 71 72 73 74 75
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

W
wanghuancoder 已提交
76
    def func_test_api(self):
77 78
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
79
        self._get_answer()
80 81

        error_msg = "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
82 83 84 85
        self.assertTrue((self.data == static_out).all(),
                        msg=error_msg.format("static", self.data, static_out))
        self.assertTrue((self.data == dynamic_out).all(),
                        msg=error_msg.format("dynamic", self.data, dynamic_out))
86

W
wanghuancoder 已提交
87 88 89 90 91
    def test_api(self):
        with _test_eager_guard():
            self.func_test_api()
        self.func_test_api()

92

93 94
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
95
class TestSetValueItemInt(TestSetValueApi):
96

97 98 99 100 101 102 103
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


104 105
# 1.2 item is slice
# 1.2.1 step is 1
106
class TestSetValueItemSlice(TestSetValueApi):
107

108 109 110 111 112 113 114 115
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
116

117 118 119 120 121 122 123 124
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
125

126 127 128 129 130 131 132 133
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
134

135 136 137 138 139 140 141
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


142
class TestSetValueItemSlice5(TestSetValueApi):
143

144 145 146 147 148 149 150
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


151
class TestSetValueItemSliceInWhile(TestSetValueApi):
152

153
    def _call_setitem(self, x):
154

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

        i = paddle.zeros(shape=(1, ), dtype='int32')
        i, x = paddle.fluid.layers.while_loop(cond, body, [i, x])

    def _get_answer(self):
        self.data[0] = self.value


170 171
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
172

173 174 175 176 177 178 179 180 181 182 183
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
184

185 186 187 188 189 190 191 192 193 194 195
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
196

197 198 199 200 201 202 203 204
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
205

206 207 208 209 210 211 212 213 214
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
215

216 217 218 219 220 221 222 223 224 225 226 227 228 229
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
260

261 262 263 264 265 266 267 268 269 270 271 272 273
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


274
class TestSetValueItemEllipsis1(TestSetValueApi):
275

276 277 278 279 280 281 282 283
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
284

285 286 287 288 289 290 291 292
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
293

294 295 296 297 298 299 300 301
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
302

303 304 305 306 307 308 309
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


310 311
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
312

313 314 315 316 317 318 319 320 321
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
322

323 324 325 326 327 328 329 330 331 332
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
333

334 335 336 337 338 339 340 341 342 343
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
344

345 346 347 348 349 350 351 352 353 354
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
355

356 357 358 359 360 361 362 363 364 365
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
366

367 368 369 370 371 372 373 374 375 376 377 378
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
379 380
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
381

Z
zyfncg 已提交
382 383 384 385 386 387 388 389
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
390

Z
zyfncg 已提交
391 392 393 394 395 396 397 398
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
399

Z
zyfncg 已提交
400 401 402 403 404 405 406 407
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
408

Z
zyfncg 已提交
409 410 411 412 413 414 415 416
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
417

Z
zyfncg 已提交
418 419 420 421 422 423 424 425
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
426

Z
zyfncg 已提交
427 428 429 430 431 432 433 434
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
435

Z
zyfncg 已提交
436 437 438 439 440 441 442 443
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
444

Z
zyfncg 已提交
445 446 447 448 449 450 451 452
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
453

Z
zyfncg 已提交
454 455 456 457 458 459 460
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


461
class TestSetValueItemNone10(TestSetValueApi):
462

463 464 465 466 467 468 469
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
470 471
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
472

Z
zyfncg 已提交
473 474 475 476 477 478 479 480
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
481

Z
zyfncg 已提交
482 483 484 485 486 487 488 489
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
490

Z
zyfncg 已提交
491 492 493 494 495 496 497 498
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
499

Z
zyfncg 已提交
500 501 502 503 504 505 506 507 508
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
509

Z
zyfncg 已提交
510 511 512 513 514 515
    def _call_setitem(self, x):
        idx = paddle.assign(
            np.array([[False, True, False], [True, True, False]]))
        x[idx] = self.value

    def _get_answer(self):
516 517
        self.data[np.array([[False, True, False], [True, True,
                                                   False]])] = self.value
Z
zyfncg 已提交
518 519 520


class TestSetValueItemBool6(TestSetValueApi):
521

Z
zyfncg 已提交
522 523 524 525 526 527 528 529 530
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


531
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
532
# 2.1 value is int32, int64, float32, float64, bool
533 534 535


def create_test_value_int32(parent):
536

537
    class TestValueInt(parent):
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
558

559
    class TestValueInt(parent):
560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


def create_test_value_fp32(parent):
580

581
    class TestValueInt(parent):
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


601
def create_test_value_fp64(parent):
602

603
    class TestValueInt(parent):
604

605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


623
def create_test_value_bool(parent):
624

625
    class TestValueInt(parent):
626

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


645
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
646
def create_test_value_numpy_int32(parent):
647

648
    class TestValueInt(parent):
649

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
669

670
    class TestValueInt(parent):
671

672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
691

692
    class TestValueInt(parent):
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


712
def create_test_value_numpy_fp64(parent):
713

714
    class TestValueInt(parent):
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


734
def create_test_value_numpy_bool(parent):
735

736
    class TestValueInt(parent):
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
758

759
    class TestValueInt(parent):
760

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
784

785
    class TestValueInt(parent):
786

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
810

811
    class TestValueInt(parent):
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
836

837
    class TestValueInt(parent):
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
862

863
    class TestValueInt(parent):
864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
889

890 891 892 893 894 895 896 897 898 899 900
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
901

902 903 904 905 906 907 908 909 910 911 912
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
913

914
    def set_value(self):
915 916
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3, 3]])  # shape is (3,4)
917 918 919 920 921 922 923 924 925

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
926

927
    def set_value(self):
928 929 930
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3,
                                3]]).astype(self.dtype)  # shape is (3,4)
931 932 933 934 935 936 937 938

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


939
class TestSetValueValueShape5(TestSetValueApi):
940

941 942 943 944 945 946 947 948 949 950 951 952 953
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


954 955
# 4. Test error
class TestError(TestSetValueBase):
956

957 958 959 960 961 962 963 964 965 966 967 968 969 970
    def _value_type_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor"
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
        ):
971
            y = paddle.ones(shape=self.shape, dtype="float16")
972 973 974
            y[0] = 1

    def _step_error(self):
975
        with self.assertRaisesRegexp(ValueError, "step can not be 0"):
976
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
977
            x[0:1:0] = self.value
978

979 980 981 982 983
    def _ellipsis_error(self):
        with self.assertRaisesRegexp(
                IndexError, "An index can only have a single ellipsis"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
984 985 986 987
        with self.assertRaisesRegexp(ValueError, "the start or end is None"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
988

Z
zyfncg 已提交
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

1004 1005 1006 1007 1008 1009 1010
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
1011
        with self.assertRaises(ValueError):
1012 1013 1014
            exe.run(program)

    def test_error(self):
1015
        paddle.enable_static()
1016 1017 1018 1019
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._dtype_error()
            self._step_error()
Z
zyfncg 已提交
1020 1021
            self._bool_list_error()
            self._bool_tensor_error()
1022 1023 1024
        self._broadcast_mismatch()


1025 1026 1027 1028
# 5. Test backward


class Model(paddle.nn.Layer):
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
    def __init__(self):
        super(Model, self).__init__()
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')

1059 1060 1061
            label = paddle.static.data(name="label",
                                       shape=[4, 1],
                                       dtype='int64')
1062 1063 1064 1065 1066 1067 1068

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1069 1070
            cost = paddle.nn.functional.cross_entropy(input=prediction,
                                                      label=label)
1071 1072 1073 1074 1075 1076 1077 1078 1079
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1080 1081 1082 1083 1084
            feed={
                "x": x_np,
                "y": y_np,
                "label": label_np
            },
1085 1086 1087 1088
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"])

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1089 1090

    def func_test_dynamic(self):
1091 1092 1093 1094 1095 1096 1097
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1098
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
W
wanghuancoder 已提交
1099 1100

    def test_dynamic(self):
1101
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
W
wanghuancoder 已提交
1102 1103 1104
        with _test_eager_guard():
            self.func_test_dynamic()
        self.func_test_dynamic()
1105
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
1106 1107 1108


class TestGradientTruncated(unittest.TestCase):
1109

W
wanghuancoder 已提交
1110
    def func_test_consistent_with_competitor(self):
1111 1112 1113 1114 1115 1116 1117 1118 1119
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1120 1121
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([1, 2, 1, 3, 1, 4])
1122 1123 1124 1125 1126 1127 1128 1129 1130
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

        value_grad = np.array([[600., 606., 612., 618.]])
1131 1132 1133 1134 1135
        input_grad = np.array([[[[[[4., 32., 108., 256.]],
                                  [[500., 864., 1372., 2048.]],
                                  [[2916., 4000., 5324., 6912.]]]],
                                [[[[0., 0., 0., 0.]], [[0., 0., 0., 0.]],
                                  [[0., 0., 0., 0.]]]]]])
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        self.assertTrue(
            np.array_equal(inps.grad.numpy(), input_grad),
            msg="The gradient of value should be \n{},\n but reveived {}".
            format(input_grad, inps.grad.numpy()))
        self.assertTrue(
            np.array_equal(value.grad.numpy(), value_grad),
            msg="The gradient of input should be \n{},\n but reveived {}".
            format(value_grad, value.grad.numpy()))

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

        value_grad2 = np.array([600.])
1156 1157 1158 1159 1160 1161
        input_grad2 = np.array([[[4., 32., 108.], [0., 0., 0.]],
                                [[1372., 2048., 2916.], [4000., 5324., 6912.]],
                                [[8788., 10976., 13500.],
                                 [16384., 19652., 23328.]],
                                [[27436., 32000., 37044.],
                                 [42592., 48668., 55296.]]])
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        self.assertTrue(
            np.array_equal(inps2.grad.numpy(), input_grad2),
            msg="The gradient of value should be \n{},\n but reveived {}".
            format(input_grad, inps2.grad.numpy()))
        self.assertTrue(
            np.array_equal(value2.grad.numpy(), value_grad2),
            msg="The gradient of input should be \n{},\n but reveived {}".
            format(value_grad, value2.grad.numpy()))

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1178 1179
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([4, 3, 1, 1, 2, 1])
1180 1181 1182 1183 1184 1185 1186 1187 1188
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        input_grad = np.array([[[[[[0.], [0.]]]], [[[[0.], [0.]]]],
                                [[[[0.], [0.]]]]],
                               [[[[[1372.], [2048.]]]], [[[[2916.], [4000.]]]],
                                [[[[5324.], [6912.]]]]],
                               [[[[[8788.], [10976.]]]], [[[[13500.],
                                                            [16384.]]]],
                                [[[[19652.], [23328.]]]]],
                               [[[[[27436.], [32000.]]]],
                                [[[[37044.], [42592.]]]],
                                [[[[48668.], [55296.]]]]]])
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
        self.assertTrue(
            np.array_equal(inps.grad.numpy(), input_grad),
            msg="The gradient of value should be \n{},\n but reveived {}".
            format(input_grad, inps.grad.numpy()))
        self.assertTrue(
            np.array_equal(value.grad.numpy(), value_grad),
            msg="The gradient of input should be \n{},\n but reveived {}".
            format(value_grad, value.grad.numpy()))

        #case 4: step >0
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1215 1216
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([2, 3, 1, 4, 1])
1217 1218 1219 1220 1221 1222 1223 1224 1225
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1226 1227
        input_grad = np.array([[[[[0.], [32.], [108.], [0.]]],
                                [[[0.], [864.], [1372.], [0.]]],
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
                                [[[0.], [4000.], [5324.], [0.]]]],
                               [[[[8788.], [10976.], [13500.], [16384.]]],
                                [[[19652.], [23328.], [27436.], [32000.]]],
                                [[[37044.], [42592.], [48668.], [55296.]]]]])
        self.assertTrue(
            np.array_equal(inps.grad.numpy(), input_grad),
            msg="The gradient of value should be \n{},\n but reveived {}".
            format(input_grad, inps.grad.numpy()))
        self.assertTrue(
            np.array_equal(value.grad.numpy(), value_grad),
            msg="The gradient of input should be \n{},\n but reveived {}".
            format(value_grad, value.grad.numpy()))

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1257 1258
        value_grad = np.array([[200., 202., 204.,
                                206.], [208., 210., 212., 214.],
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
                               [216., 218., 220., 222.]])
        input_grad = np.array([[[0., 0., 0., 0.], [0., 0., 0., 0.],
                                [0., 0., 0., 0.]],
                               [[8788., 10976., 13500., 16384.],
                                [19652., 23328., 27436., 32000.],
                                [37044., 42592., 48668., 55296.]]])
        self.assertTrue(
            np.array_equal(inps.grad.numpy(), input_grad),
            msg="The gradient of value should be \n{},\n but reveived {}".
            format(input_grad, inps.grad.numpy()))
        self.assertTrue(
            np.array_equal(value.grad.numpy(), value_grad),
            msg="The gradient of input should be \n{},\n but reveived {}".
            format(value_grad, value.grad.numpy()))

1274 1275 1276 1277 1278 1279 1280 1281 1282
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1283 1284
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1285

W
wanghuancoder 已提交
1286 1287 1288 1289 1290
    def test_consistent_with_competitor(self):
        with _test_eager_guard():
            self.func_test_consistent_with_competitor()
        self.func_test_consistent_with_competitor()

1291 1292 1293 1294 1295 1296 1297 1298
    def test_static_graph(self):
        paddle.enable_static()

        to_string = lambda x, i, : x + '_' + str(i)
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
1299
            # test stop_gradient
1300 1301
            value.stop_gradient = True
            x.stop_gradient = False
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      5,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    0,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     -2,
                                                     force_cpu=True)
1314 1315 1316 1317

            inputs = {
                'Input': x,
                'ValueTensor': value,
1318 1319 1320 1321 1322 1323 1324 1325 1326
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1327 1328 1329 1330 1331
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1332 1333 1334 1335
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1336 1337 1338 1339 1340

            return y, value

        def op2(x):
            value = paddle.fluid.layers.fill_constant([1, 3, 2], "float32", 1)
1341
            # test stop_gradient
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
                'dtype': paddle.float32
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1358 1359 1360 1361
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs=attrs)
1362 1363 1364 1365 1366 1367 1368

            return y, value

        def op3(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
            x.stop_gradient = True
            value.stop_gradient = False
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      0,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    5,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     3,
                                                     force_cpu=True)
1381 1382 1383 1384

            inputs = {
                'Input': x,
                'ValueTensor': value,
1385 1386 1387 1388 1389 1390 1391 1392 1393
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1394 1395 1396 1397 1398
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1399 1400 1401 1402
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1403 1404 1405 1406 1407

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1408 1409 1410
            x = paddle.static.data(name=name_x,
                                   shape=array.shape,
                                   dtype='float32')
1411

1412 1413
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
            # set_value_grad_op will not be run during backward.
            y, value = op(x)

            y2 = y + 1
            loss = paddle.fluid.layers.reduce_sum(y2)
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1438 1439
        array = np.arange(0, numel(input_shape),
                          dtype="float32").reshape(input_shape)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1459
        paddle.disable_static()
1460 1461


Z
zyfncg 已提交
1462
class TestSetValueInplace(unittest.TestCase):
1463

Z
zyfncg 已提交
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
            self.assertTrue(np.array_equal(b.numpy(), c.numpy()))
            self.assertEqual(b.inplace_version, 1)

        paddle.enable_static()


1481
class TestSetValueInplaceLeafVar(unittest.TestCase):
1482

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

        self.assertTrue(np.array_equal(a_grad_1, a_grad_2))
        self.assertTrue(np.array_equal(b_grad_1, b_grad_2))
        paddle.enable_static()


1518 1519
if __name__ == '__main__':
    unittest.main()