test_set_value_op.py 44.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test set_value op in static mode

import unittest
import numpy as np

import paddle
21
import paddle.fluid as fluid
22 23
from paddle.fluid.layer_helper import LayerHelper
from functools import reduce
J
Jiabin Yang 已提交
24
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
25 26 27


class TestSetValueBase(unittest.TestCase):
28

29 30 31 32
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
33
        self.set_shape()
34 35 36
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

37 38 39
    def set_shape(self):
        self.shape = [2, 3, 4]

40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
54

55 56
    def _run_static(self):
        paddle.enable_static()
57 58 59 60 61 62
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
63 64 65 66 67 68 69 70 71 72 73
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

W
wanghuancoder 已提交
74
    def func_test_api(self):
75 76
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
77
        self._get_answer()
78 79

        error_msg = "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
80 81 82 83
        self.assertTrue((self.data == static_out).all(),
                        msg=error_msg.format("static", self.data, static_out))
        self.assertTrue((self.data == dynamic_out).all(),
                        msg=error_msg.format("dynamic", self.data, dynamic_out))
84

W
wanghuancoder 已提交
85 86 87 88 89
    def test_api(self):
        with _test_eager_guard():
            self.func_test_api()
        self.func_test_api()

90

91 92
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
93
class TestSetValueItemInt(TestSetValueApi):
94

95 96 97 98 99 100 101
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


102 103
# 1.2 item is slice
# 1.2.1 step is 1
104
class TestSetValueItemSlice(TestSetValueApi):
105

106 107 108 109 110 111 112 113
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
114

115 116 117 118 119 120 121 122
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
123

124 125 126 127 128 129 130 131
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
132

133 134 135 136 137 138 139
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


140
class TestSetValueItemSlice5(TestSetValueApi):
141

142 143 144 145 146 147 148
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


149
class TestSetValueItemSliceInWhile(TestSetValueApi):
150

151
    def _call_setitem(self, x):
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

        i = paddle.zeros(shape=(1, ), dtype='int32')
        i, x = paddle.fluid.layers.while_loop(cond, body, [i, x])

    def _get_answer(self):
        self.data[0] = self.value


168 169
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
170

171 172 173 174 175 176 177 178 179 180 181
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
182

183 184 185 186 187 188 189 190 191 192 193
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
194

195 196 197 198 199 200 201 202
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
203

204 205 206 207 208 209 210 211 212
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
258

259 260 261 262 263 264 265 266 267 268 269 270 271
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


272
class TestSetValueItemEllipsis1(TestSetValueApi):
273

274 275 276 277 278 279 280 281
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
282

283 284 285 286 287 288 289 290
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
291

292 293 294 295 296 297 298 299
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
300

301 302 303 304 305 306 307
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


308 309
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
310

311 312 313 314 315 316 317 318 319
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
320

321 322 323 324 325 326 327 328 329 330
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
331

332 333 334 335 336 337 338 339 340 341
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
342

343 344 345 346 347 348 349 350 351 352
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
353

354 355 356 357 358 359 360 361 362 363
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
364

365 366 367 368 369 370 371 372 373 374 375 376
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
377 378
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
379

Z
zyfncg 已提交
380 381 382 383 384 385 386 387
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
388

Z
zyfncg 已提交
389 390 391 392 393 394 395 396
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
397

Z
zyfncg 已提交
398 399 400 401 402 403 404 405
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
406

Z
zyfncg 已提交
407 408 409 410 411 412 413 414
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
415

Z
zyfncg 已提交
416 417 418 419 420 421 422 423
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
424

Z
zyfncg 已提交
425 426 427 428 429 430 431 432
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
433

Z
zyfncg 已提交
434 435 436 437 438 439 440 441
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
442

Z
zyfncg 已提交
443 444 445 446 447 448 449 450
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
451

Z
zyfncg 已提交
452 453 454 455 456 457 458
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


459
class TestSetValueItemNone10(TestSetValueApi):
460

461 462 463 464 465 466 467
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
468 469
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
470

Z
zyfncg 已提交
471 472 473 474 475 476 477 478
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
479

Z
zyfncg 已提交
480 481 482 483 484 485 486 487
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
488

Z
zyfncg 已提交
489 490 491 492 493 494 495 496
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
497

Z
zyfncg 已提交
498 499 500 501 502 503 504 505 506
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
507

Z
zyfncg 已提交
508 509 510 511 512 513
    def _call_setitem(self, x):
        idx = paddle.assign(
            np.array([[False, True, False], [True, True, False]]))
        x[idx] = self.value

    def _get_answer(self):
514 515
        self.data[np.array([[False, True, False], [True, True,
                                                   False]])] = self.value
Z
zyfncg 已提交
516 517 518


class TestSetValueItemBool6(TestSetValueApi):
519

Z
zyfncg 已提交
520 521 522 523 524 525 526 527 528
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


529
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
530
# 2.1 value is int32, int64, float32, float64, bool
531 532 533


def create_test_value_int32(parent):
534

535
    class TestValueInt(parent):
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
556

557
    class TestValueInt(parent):
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


def create_test_value_fp32(parent):
578

579
    class TestValueInt(parent):
580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


599
def create_test_value_fp64(parent):
600

601
    class TestValueInt(parent):
602

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


621
def create_test_value_bool(parent):
622

623
    class TestValueInt(parent):
624

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


643
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
644
def create_test_value_numpy_int32(parent):
645

646
    class TestValueInt(parent):
647

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
667

668
    class TestValueInt(parent):
669

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
689

690
    class TestValueInt(parent):
691

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


710
def create_test_value_numpy_fp64(parent):
711

712
    class TestValueInt(parent):
713

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


732
def create_test_value_numpy_bool(parent):
733

734
    class TestValueInt(parent):
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
756

757
    class TestValueInt(parent):
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
782

783
    class TestValueInt(parent):
784

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
808

809
    class TestValueInt(parent):
810

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
834

835
    class TestValueInt(parent):
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
860

861
    class TestValueInt(parent):
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
887

888 889 890 891 892 893 894 895 896 897 898
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
899

900 901 902 903 904 905 906 907 908 909 910
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
911

912
    def set_value(self):
913 914
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3, 3]])  # shape is (3,4)
915 916 917 918 919 920 921 922 923

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
924

925
    def set_value(self):
926 927 928
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3,
                                3]]).astype(self.dtype)  # shape is (3,4)
929 930 931 932 933 934 935 936

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


937
class TestSetValueValueShape5(TestSetValueApi):
938

939 940 941 942 943 944 945 946 947 948 949 950 951
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


952 953
# 4. Test error
class TestError(TestSetValueBase):
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968
    def _value_type_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor"
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
        ):
969
            y = paddle.ones(shape=self.shape, dtype="float16")
970 971 972
            y[0] = 1

    def _step_error(self):
973
        with self.assertRaisesRegexp(ValueError, "step can not be 0"):
974
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
975
            x[0:1:0] = self.value
976

977 978 979 980 981
    def _ellipsis_error(self):
        with self.assertRaisesRegexp(
                IndexError, "An index can only have a single ellipsis"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
982 983 984 985
        with self.assertRaisesRegexp(ValueError, "the start or end is None"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
986

Z
zyfncg 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

1002 1003 1004 1005 1006 1007 1008
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
1009
        with self.assertRaises(ValueError):
1010 1011 1012
            exe.run(program)

    def test_error(self):
1013
        paddle.enable_static()
1014 1015 1016 1017
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._dtype_error()
            self._step_error()
Z
zyfncg 已提交
1018 1019
            self._bool_list_error()
            self._bool_tensor_error()
1020 1021 1022
        self._broadcast_mismatch()


1023 1024 1025 1026
# 5. Test backward


class Model(paddle.nn.Layer):
1027

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def __init__(self):
        super(Model, self).__init__()
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')

1057 1058 1059
            label = paddle.static.data(name="label",
                                       shape=[4, 1],
                                       dtype='int64')
1060 1061 1062 1063 1064 1065 1066

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1067 1068
            cost = paddle.nn.functional.cross_entropy(input=prediction,
                                                      label=label)
1069 1070 1071 1072 1073 1074 1075 1076 1077
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1078 1079 1080 1081 1082
            feed={
                "x": x_np,
                "y": y_np,
                "label": label_np
            },
1083 1084 1085 1086
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"])

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1087 1088

    def func_test_dynamic(self):
1089 1090 1091 1092 1093 1094 1095
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1096
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
W
wanghuancoder 已提交
1097 1098

    def test_dynamic(self):
1099
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
W
wanghuancoder 已提交
1100 1101 1102
        with _test_eager_guard():
            self.func_test_dynamic()
        self.func_test_dynamic()
1103
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
1104 1105 1106


class TestGradientTruncated(unittest.TestCase):
1107

W
wanghuancoder 已提交
1108
    def func_test_consistent_with_competitor(self):
1109 1110 1111 1112 1113 1114 1115 1116 1117
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1118 1119
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([1, 2, 1, 3, 1, 4])
1120 1121 1122 1123 1124 1125 1126 1127 1128
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

        value_grad = np.array([[600., 606., 612., 618.]])
1129 1130 1131 1132 1133
        input_grad = np.array([[[[[[4., 32., 108., 256.]],
                                  [[500., 864., 1372., 2048.]],
                                  [[2916., 4000., 5324., 6912.]]]],
                                [[[[0., 0., 0., 0.]], [[0., 0., 0., 0.]],
                                  [[0., 0., 0., 0.]]]]]])
1134 1135 1136 1137
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1138
            format(input_grad, inps.grad.numpy()))
1139 1140 1141 1142
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
            format(value_grad, value.grad.numpy()))

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

        value_grad2 = np.array([600.])
1156 1157 1158 1159 1160 1161
        input_grad2 = np.array([[[4., 32., 108.], [0., 0., 0.]],
                                [[1372., 2048., 2916.], [4000., 5324., 6912.]],
                                [[8788., 10976., 13500.],
                                 [16384., 19652., 23328.]],
                                [[27436., 32000., 37044.],
                                 [42592., 48668., 55296.]]])
1162 1163 1164 1165
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1166
            format(input_grad, inps2.grad.numpy()))
1167 1168 1169 1170
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1171 1172 1173 1174 1175 1176 1177 1178 1179
            format(value_grad, value2.grad.numpy()))

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1180 1181
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([4, 3, 1, 1, 2, 1])
1182 1183 1184 1185 1186 1187 1188 1189 1190
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
        input_grad = np.array([[[[[[0.], [0.]]]], [[[[0.], [0.]]]],
                                [[[[0.], [0.]]]]],
                               [[[[[1372.], [2048.]]]], [[[[2916.], [4000.]]]],
                                [[[[5324.], [6912.]]]]],
                               [[[[[8788.], [10976.]]]], [[[[13500.],
                                                            [16384.]]]],
                                [[[[19652.], [23328.]]]]],
                               [[[[[27436.], [32000.]]]],
                                [[[[37044.], [42592.]]]],
                                [[[[48668.], [55296.]]]]]])
1201 1202 1203 1204
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1205
            format(input_grad, inps.grad.numpy()))
1206 1207 1208 1209
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1210 1211 1212 1213 1214 1215 1216 1217 1218
            format(value_grad, value.grad.numpy()))

        #case 4: step >0
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1219 1220
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([2, 3, 1, 4, 1])
1221 1222 1223 1224 1225 1226 1227 1228 1229
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1230 1231
        input_grad = np.array([[[[[0.], [32.], [108.], [0.]]],
                                [[[0.], [864.], [1372.], [0.]]],
1232 1233 1234 1235
                                [[[0.], [4000.], [5324.], [0.]]]],
                               [[[[8788.], [10976.], [13500.], [16384.]]],
                                [[[19652.], [23328.], [27436.], [32000.]]],
                                [[[37044.], [42592.], [48668.], [55296.]]]]])
1236 1237 1238 1239
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1240
            format(input_grad, inps.grad.numpy()))
1241 1242 1243 1244
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
            format(value_grad, value.grad.numpy()))

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1263 1264
        value_grad = np.array([[200., 202., 204.,
                                206.], [208., 210., 212., 214.],
1265 1266 1267 1268 1269 1270
                               [216., 218., 220., 222.]])
        input_grad = np.array([[[0., 0., 0., 0.], [0., 0., 0., 0.],
                                [0., 0., 0., 0.]],
                               [[8788., 10976., 13500., 16384.],
                                [19652., 23328., 27436., 32000.],
                                [37044., 42592., 48668., 55296.]]])
1271 1272 1273 1274
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1275
            format(input_grad, inps.grad.numpy()))
1276 1277 1278 1279
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1280 1281
            format(value_grad, value.grad.numpy()))

1282 1283 1284 1285 1286 1287 1288 1289 1290
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1291 1292
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1293

W
wanghuancoder 已提交
1294 1295 1296 1297 1298
    def test_consistent_with_competitor(self):
        with _test_eager_guard():
            self.func_test_consistent_with_competitor()
        self.func_test_consistent_with_competitor()

1299 1300 1301 1302 1303 1304 1305 1306
    def test_static_graph(self):
        paddle.enable_static()

        to_string = lambda x, i, : x + '_' + str(i)
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
1307
            # test stop_gradient
1308 1309
            value.stop_gradient = True
            x.stop_gradient = False
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      5,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    0,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     -2,
                                                     force_cpu=True)
1322 1323 1324 1325

            inputs = {
                'Input': x,
                'ValueTensor': value,
1326 1327 1328 1329 1330 1331 1332 1333 1334
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1335 1336 1337 1338 1339
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1340 1341 1342 1343
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1344 1345 1346 1347 1348

            return y, value

        def op2(x):
            value = paddle.fluid.layers.fill_constant([1, 3, 2], "float32", 1)
1349
            # test stop_gradient
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
                'dtype': paddle.float32
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1366 1367 1368 1369
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs=attrs)
1370 1371 1372 1373 1374 1375 1376

            return y, value

        def op3(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
            x.stop_gradient = True
            value.stop_gradient = False
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      0,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    5,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     3,
                                                     force_cpu=True)
1389 1390 1391 1392

            inputs = {
                'Input': x,
                'ValueTensor': value,
1393 1394 1395 1396 1397 1398 1399 1400 1401
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1402 1403 1404 1405 1406
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1407 1408 1409 1410
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1411 1412 1413 1414 1415

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1416 1417 1418
            x = paddle.static.data(name=name_x,
                                   shape=array.shape,
                                   dtype='float32')
1419

1420 1421
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
            # set_value_grad_op will not be run during backward.
            y, value = op(x)

            y2 = y + 1
            loss = paddle.fluid.layers.reduce_sum(y2)
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1446 1447
        array = np.arange(0, numel(input_shape),
                          dtype="float32").reshape(input_shape)
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1467
        paddle.disable_static()
1468 1469


Z
zyfncg 已提交
1470
class TestSetValueInplace(unittest.TestCase):
1471

Z
zyfncg 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
1483
            np.testing.assert_array_equal(b.numpy(), c.numpy())
Z
zyfncg 已提交
1484 1485 1486 1487 1488
            self.assertEqual(b.inplace_version, 1)

        paddle.enable_static()


1489
class TestSetValueInplaceLeafVar(unittest.TestCase):
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1521 1522
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1523 1524 1525
        paddle.enable_static()


1526 1527
if __name__ == '__main__':
    unittest.main()