test_reshape_op.py 16.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yibing Liu 已提交
15 16 17
import unittest
import numpy as np

18
from op_test import OpTest, convert_float_to_uint16
19
import paddle
20
import paddle.fluid as fluid
J
joejiong 已提交
21
from paddle.static import Program, program_guard
Y
Yibing Liu 已提交
22

C
caoying03 已提交
23

24
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
25
class TestReshapeOp(OpTest):
26

C
caoying03 已提交
27
    def setUp(self):
28 29 30 31 32 33 34 35
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
36

37
    def init_data(self):
Z
zhupengyang 已提交
38 39 40
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
41 42

    def test_check_output(self):
43
        self.check_output(no_check_set=['XShape'])
44 45 46

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
47 48 49


class TestReshapeBF16Op(OpTest):
50

51 52 53 54 55 56 57 58 59
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.dtype = np.uint16
        x = np.random.random(self.ori_shape).astype("float32")
        out = x.reshape(self.infered_shape)
        self.inputs = {"X": convert_float_to_uint16(x)}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
60 61 62 63
            "Out":
            convert_float_to_uint16(out),
            'XShape':
            convert_float_to_uint16(
64 65 66 67 68 69 70 71 72 73 74 75 76
                np.random.random(self.ori_shape).astype("float32"))
        }

    def init_data(self):
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
77 78


79
class TestReshapeOpDimInfer1(TestReshapeOp):
80

81
    def init_data(self):
Z
zhupengyang 已提交
82
        self.ori_shape = (5, 25)
83 84
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
85 86


87
class TestReshapeOpDimInfer2(TestReshapeOp):
88

89
    def init_data(self):
Z
zhupengyang 已提交
90 91 92
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
93

C
caoying03 已提交
94

95
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
96
class TestReshapeOpWithInputShape(OpTest):
97

98
    def setUp(self):
99
        self.init_data()
100
        self.op_type = "reshape2"
101

102
        self.inputs = {
103
            "X": np.random.random(self.ori_shape).astype("float32"),
104
            "Shape": np.array(self.actual_shape, dtype="int32")
105
        }
106
        self.attrs = {"shape": self.new_shape}
107
        self.outputs = {
108 109
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
110
        }
111

112
    def init_data(self):
Z
zhupengyang 已提交
113 114 115
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
116

117
    def test_check_output(self):
118
        self.check_output(no_check_set=['XShape'])
119

G
guosheng 已提交
120
    def test_check_grad(self):
C
chengduo 已提交
121
        self.check_grad(["X"], "Out")
122 123


124 125
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
126

127 128 129 130 131 132 133 134 135 136 137 138 139
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
140 141 142 143 144 145 146
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
147 148 149
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
150 151 152 153 154 155 156 157 158 159
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
160

161
    def init_data(self):
Z
zhupengyang 已提交
162 163 164
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
165 166 167 168
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
169

170
    def init_data(self):
Z
zhupengyang 已提交
171 172 173 174
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
175 176 177 178


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
179

180 181 182 183 184 185
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
186
            "Shape": np.array(self.new_shape, dtype="int32")
187
        }
188 189 190 191 192 193 194
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
195 196 197
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
198 199 200 201 202 203 204 205

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


206
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
207

208
    def init_data(self):
Z
zhupengyang 已提交
209 210 211
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
212
        self.shape = (5, -1, -1)
213 214


215
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
216

217
    def init_data(self):
Z
zhupengyang 已提交
218 219 220 221
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
222 223


224 225
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
248 249 250
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
251 252

    def test_check_output(self):
253 254 255
        self.check_output_with_place(fluid.core.CPUPlace(),
                                     atol=1e-5,
                                     no_check_set=['XShape'])
256 257 258 259 260 261 262

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
263

264 265 266 267
    def init_dtype(self):
        self.dtype = np.uint8


268
class TestReshapeOpBool(TestReshapeOp):
269

270 271 272 273
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
274
            "X": np.random.choice([True, False], size=self.ori_shape)
275 276 277 278 279 280 281 282 283 284 285
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def test_check_grad(self):
        pass


286
# Test python API
287
class TestReshapeAPI(unittest.TestCase):
288

289
    def _set_paddle_api(self):
290
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
291
        self.data = paddle.static.data
292
        self.to_tensor = paddle.to_tensor
293 294 295 296
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
297 298 299

    def _set_fluid_api(self):
        self.fill_constant = fluid.layers.fill_constant
J
joejiong 已提交
300
        self.data = paddle.static.data
301 302 303
        self.reshape = fluid.layers.reshape

    def _test_api(self):
J
joejiong 已提交
304
        paddle.enable_static()
305 306
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
307 308 309 310
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
311

312
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
313

314 315
            # situation 1: have shape( list, no tensor), no actual shape(Tensor)
            out_1 = self.reshape(x, shape)
316

317
            # situation 2: have shape(list, no tensor), have actual shape(Tensor)
318 319 320
            out_2 = fluid.layers.reshape(x,
                                         shape=shape,
                                         actual_shape=actual_shape)
321

322 323
            # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
            out_3 = self.reshape(x, shape=[positive_five, 10])
324

325 326
            # Situation 4: have shape(Tensor), no actual shape(Tensor)
            out_4 = self.reshape(x, shape=actual_shape)
327

J
joejiong 已提交
328
        exe = paddle.static.Executor(place=paddle.CPUPlace())
329
        res_1, res_2, res_3, res_4 = exe.run(
330
            main_prog,
331 332 333 334
            feed={
                "x": input,
                "shape": np.array([2, 5, 5]).astype("int32")
            },
335 336 337 338 339 340
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_fluid_api(self):
        self._set_fluid_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

369

370
class TestStaticReshape_(TestReshapeAPI):
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


395
# Test Input Error
396
class TestReshapeOpError(unittest.TestCase):
397

398
    def _set_paddle_api(self):
J
joejiong 已提交
399
        self.data = paddle.static.data
400 401 402 403 404 405 406
        self.reshape = paddle.reshape

    def _set_fluid_api(self):
        self.data = fluid.data
        self.reshape = fluid.layers.reshape

    def _test_errors(self):
407 408 409
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
410 411
                x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                             paddle.CPUPlace())
412
                self.reshape(x1, shape=[1])
413 414 415

            self.assertRaises(TypeError, test_x_type)

416
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
417
            def test_x_dtype():
418
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
419
                self.reshape(x2, shape=[2, 5, 5])
420 421 422

            self.assertRaises(TypeError, test_x_dtype)

423
            def test_x_dtype_float16():
424 425 426
                x_float16 = self.data(name="x_float16",
                                      shape=[2, 25],
                                      dtype="float16")
427
                self.reshape(x_float16, shape=[2, 5, 5])
428 429 430

            test_x_dtype_float16()

431
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
432 433 434

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
435
                self.reshape(x3, shape=1)
436 437 438 439 440

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
441
                self.reshape(x3, shape=[25, 2], actual_shape=1)
442 443 444 445 446

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
447
                self.reshape(x3, shape=[-1, -1, 5])
448 449 450 451 452

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
453
                self.reshape(x3, [2, 5, 5, 0])
454 455 456

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
457
            # The argument shape have more than one negative value.
458
            def test_shape_3():
459
                self.reshape(x3, [-1, -2, 5])
460 461 462

            self.assertRaises(AssertionError, test_shape_3)

463 464 465 466 467 468 469 470
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

    def test_fluid_api_error(self):
        self._set_fluid_api()
        self._test_errors()

471

472
class TestDygraphReshapeAPI(unittest.TestCase):
473

474 475 476 477 478 479
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
480 481 482 483
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
484
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
485 486
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
487
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
488 489 490 491 492

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
493
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
494 495
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
496
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
497 498 499 500 501

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
502
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
503 504
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
505
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
506 507


508
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
509

510 511 512 513
    def executed_api(self):
        self.reshape = paddle.reshape_


514
class TestReshapeZeroTensor(unittest.TestCase):
515

516 517
    def test_reshape_zero_tensor_success(self):
        zero_tensor = paddle.zeros([0, 2, 3])
518
        # since we use "0" as the dimension copy semantically in reshape,
519 520 521 522 523 524 525 526 527 528
        # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape
        zero_tensor = zero_tensor.reshape([0, 6])
        self.assertTrue(list(zero_tensor.shape) == [0, 6])

    def test_reshape_zero_tensor_error(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        with self.assertRaises(ValueError):
            zero_tensor.reshape([2, 3])


Y
ying 已提交
529
if __name__ == "__main__":
H
hong 已提交
530
    paddle.enable_static()
Y
Yibing Liu 已提交
531
    unittest.main()