test_reshape_op.py 16.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

20
from op_test import OpTest, convert_float_to_uint16
21
import paddle
22
import paddle.fluid as fluid
J
joejiong 已提交
23 24
from paddle.fluid import compiler
from paddle.static import Program, program_guard
25
import paddle.fluid.core as core
Y
Yibing Liu 已提交
26

C
caoying03 已提交
27

28
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
29 30
class TestReshapeOp(OpTest):
    def setUp(self):
31 32 33 34 35 36 37 38
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
39

40
    def init_data(self):
Z
zhupengyang 已提交
41 42 43
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
44 45

    def test_check_output(self):
46
        self.check_output(no_check_set=['XShape'])
47 48 49

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


class TestReshapeBF16Op(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.dtype = np.uint16
        x = np.random.random(self.ori_shape).astype("float32")
        out = x.reshape(self.infered_shape)
        self.inputs = {"X": convert_float_to_uint16(x)}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": convert_float_to_uint16(out),
            'XShape': convert_float_to_uint16(
                np.random.random(self.ori_shape).astype("float32"))
        }

    def init_data(self):
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
77 78


79 80
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
81
        self.ori_shape = (5, 25)
82 83
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
84 85


86 87
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
88 89 90
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
91

C
caoying03 已提交
92

93
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
94 95
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
96
        self.init_data()
97
        self.op_type = "reshape2"
98

99
        self.inputs = {
100
            "X": np.random.random(self.ori_shape).astype("float32"),
101
            "Shape": np.array(
102
                self.actual_shape, dtype="int32")
103
        }
104
        self.attrs = {"shape": self.new_shape}
105
        self.outputs = {
106 107
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
108
        }
109

110
    def init_data(self):
Z
zhupengyang 已提交
111 112 113
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
114

115
    def test_check_output(self):
116
        self.check_output(no_check_set=['XShape'])
117

G
guosheng 已提交
118
    def test_check_grad(self):
C
chengduo 已提交
119
        self.check_grad(["X"], "Out")
120 121


122 123
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
124 125 126 127 128 129 130 131 132 133 134 135 136
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
137 138 139 140 141 142 143
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
144 145 146
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
147 148 149 150 151 152 153 154 155 156 157
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
158 159 160
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
161 162 163 164 165
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
166 167 168 169
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
170 171 172 173 174 175 176 177 178 179 180 181 182


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            "Shape": np.array(
                self.new_shape, dtype="int32")
        }
183 184 185 186 187 188 189
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
190 191 192
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
193 194 195 196 197 198 199 200

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


201
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
202
    def init_data(self):
Z
zhupengyang 已提交
203 204 205
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
206
        self.shape = (5, -1, -1)
207 208


209
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
210
    def init_data(self):
Z
zhupengyang 已提交
211 212 213 214
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
215 216


217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
240 241 242
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

    def test_check_output(self):
        self.check_output_with_place(
            fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape'])

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
    def init_dtype(self):
        self.dtype = np.uint8


258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
class TestReshapeOpBool(TestReshapeOp):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
            "X": np.random.choice(
                [True, False], size=self.ori_shape)
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def test_check_grad(self):
        pass


276
# Test python API
277
class TestReshapeAPI(unittest.TestCase):
278
    def _set_paddle_api(self):
279
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
280
        self.data = paddle.static.data
281
        self.to_tensor = paddle.to_tensor
282 283 284 285
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
286 287 288

    def _set_fluid_api(self):
        self.fill_constant = fluid.layers.fill_constant
J
joejiong 已提交
289
        self.data = paddle.static.data
290 291 292
        self.reshape = fluid.layers.reshape

    def _test_api(self):
J
joejiong 已提交
293
        paddle.enable_static()
294 295
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
296 297 298 299
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
300

301
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
302

303 304
            # situation 1: have shape( list, no tensor), no actual shape(Tensor)
            out_1 = self.reshape(x, shape)
305

306 307 308
            # situation 2: have shape(list, no tensor), have actual shape(Tensor)
            out_2 = fluid.layers.reshape(
                x, shape=shape, actual_shape=actual_shape)
309

310 311
            # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
            out_3 = self.reshape(x, shape=[positive_five, 10])
312

313 314
            # Situation 4: have shape(Tensor), no actual shape(Tensor)
            out_4 = self.reshape(x, shape=actual_shape)
315

J
joejiong 已提交
316
        exe = paddle.static.Executor(place=paddle.CPUPlace())
317
        res_1, res_2, res_3, res_4 = exe.run(
318
            main_prog,
319 320 321 322 323 324 325 326
            feed={"x": input,
                  "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
327

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_fluid_api(self):
        self._set_fluid_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

355

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
class TestStaticReshape_(TestReshapeAPI):
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


380
# Test Input Error
381
class TestReshapeOpError(unittest.TestCase):
382
    def _set_paddle_api(self):
J
joejiong 已提交
383
        self.data = paddle.static.data
384 385 386 387 388 389 390
        self.reshape = paddle.reshape

    def _set_fluid_api(self):
        self.data = fluid.data
        self.reshape = fluid.layers.reshape

    def _test_errors(self):
391 392 393 394
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
                x1 = fluid.create_lod_tensor(
J
joejiong 已提交
395
                    np.array([[-1]]), [[1]], paddle.CPUPlace())
396
                self.reshape(x1, shape=[1])
397 398 399

            self.assertRaises(TypeError, test_x_type)

400
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
401
            def test_x_dtype():
402
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
403
                self.reshape(x2, shape=[2, 5, 5])
404 405 406

            self.assertRaises(TypeError, test_x_dtype)

407
            def test_x_dtype_float16():
408 409 410
                x_float16 = self.data(
                    name="x_float16", shape=[2, 25], dtype="float16")
                self.reshape(x_float16, shape=[2, 5, 5])
411 412 413

            test_x_dtype_float16()

414
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
415 416 417

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
418
                self.reshape(x3, shape=1)
419 420 421 422 423

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
424
                self.reshape(x3, shape=[25, 2], actual_shape=1)
425 426 427 428 429

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
430
                self.reshape(x3, shape=[-1, -1, 5])
431 432 433 434 435

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
436
                self.reshape(x3, [2, 5, 5, 0])
437 438 439

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
440
            # The argument shape have more than one negative value.
441
            def test_shape_3():
442
                self.reshape(x3, [-1, -2, 5])
443 444 445

            self.assertRaises(AssertionError, test_shape_3)

446 447 448 449 450 451 452 453
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

    def test_fluid_api_error(self):
        self._set_fluid_api()
        self._test_errors()

454

455 456 457 458 459 460 461
class TestDygraphReshapeAPI(unittest.TestCase):
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
462 463 464 465
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
466
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
467 468 469 470 471 472 473 474
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
475
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
476 477 478 479 480 481 482 483
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
484
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
485 486 487 488 489
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))


490 491 492 493 494
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
    def executed_api(self):
        self.reshape = paddle.reshape_


495 496 497 498 499 500 501 502 503 504 505 506 507 508
class TestReshapeZeroTensor(unittest.TestCase):
    def test_reshape_zero_tensor_success(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        # since we use "0" as the dimension copy semantically in reshape, 
        # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape
        zero_tensor = zero_tensor.reshape([0, 6])
        self.assertTrue(list(zero_tensor.shape) == [0, 6])

    def test_reshape_zero_tensor_error(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        with self.assertRaises(ValueError):
            zero_tensor.reshape([2, 3])


Y
ying 已提交
509
if __name__ == "__main__":
Y
Yibing Liu 已提交
510
    unittest.main()