test_reshape_op.py 13.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

Y
ying 已提交
20
from op_test import OpTest
21
import paddle
22
import paddle.fluid as fluid
J
joejiong 已提交
23 24
from paddle.fluid import compiler
from paddle.static import Program, program_guard
Y
Yibing Liu 已提交
25

C
caoying03 已提交
26

27
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
28 29
class TestReshapeOp(OpTest):
    def setUp(self):
30 31 32 33 34 35 36 37
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
38

39
    def init_data(self):
Z
zhupengyang 已提交
40 41 42
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
43 44

    def test_check_output(self):
45
        self.check_output(no_check_set=['XShape'])
46 47 48 49 50

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


51 52
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
53
        self.ori_shape = (5, 25)
54 55
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
56 57


58 59
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
60 61 62
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
63

C
caoying03 已提交
64

65
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
66 67
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
68
        self.init_data()
69
        self.op_type = "reshape2"
70

71
        self.inputs = {
72
            "X": np.random.random(self.ori_shape).astype("float32"),
73
            "Shape": np.array(
74
                self.actual_shape, dtype="int32")
75
        }
76
        self.attrs = {"shape": self.new_shape}
77
        self.outputs = {
78 79
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
80
        }
81

82
    def init_data(self):
Z
zhupengyang 已提交
83 84 85
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
86

87
    def test_check_output(self):
88
        self.check_output(no_check_set=['XShape'])
89

G
guosheng 已提交
90
    def test_check_grad(self):
C
chengduo 已提交
91
        self.check_grad(["X"], "Out")
92 93


94 95
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
96 97 98 99 100 101 102 103 104 105 106 107 108
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
109 110 111 112 113 114 115
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
116 117 118
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
119 120 121 122 123 124 125 126 127 128 129
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
130 131 132
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
133 134 135 136 137
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
138 139 140 141
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
142 143 144 145 146 147 148 149 150 151 152 153 154


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            "Shape": np.array(
                self.new_shape, dtype="int32")
        }
155 156 157 158 159 160 161
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
162 163 164
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
165 166 167 168 169 170 171 172

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


173
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
174
    def init_data(self):
Z
zhupengyang 已提交
175 176 177
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
178
        self.shape = (5, -1, -1)
179 180


181
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
182
    def init_data(self):
Z
zhupengyang 已提交
183 184 185 186
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
187 188


189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
212 213 214
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229

    def test_check_output(self):
        self.check_output_with_place(
            fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape'])

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
    def init_dtype(self):
        self.dtype = np.uint8


230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
class TestReshapeOpBool(TestReshapeOp):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
            "X": np.random.choice(
                [True, False], size=self.ori_shape)
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def test_check_grad(self):
        pass


248
# Test python API
249
class TestReshapeAPI(unittest.TestCase):
250
    def _set_paddle_api(self):
251
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
252
        self.data = paddle.static.data
253 254 255 256 257
        self.reshape = paddle.reshape
        self.to_tensor = paddle.to_tensor

    def _set_fluid_api(self):
        self.fill_constant = fluid.layers.fill_constant
J
joejiong 已提交
258
        self.data = paddle.static.data
259 260 261
        self.reshape = fluid.layers.reshape

    def _test_api(self):
J
joejiong 已提交
262
        paddle.enable_static()
263 264
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
265 266 267 268
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
269

270
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
271

272 273
            # situation 1: have shape( list, no tensor), no actual shape(Tensor)
            out_1 = self.reshape(x, shape)
274

275 276 277
            # situation 2: have shape(list, no tensor), have actual shape(Tensor)
            out_2 = fluid.layers.reshape(
                x, shape=shape, actual_shape=actual_shape)
278

279 280
            # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
            out_3 = self.reshape(x, shape=[positive_five, 10])
281

282 283
            # Situation 4: have shape(Tensor), no actual shape(Tensor)
            out_4 = self.reshape(x, shape=actual_shape)
284

J
joejiong 已提交
285
        exe = paddle.static.Executor(place=paddle.CPUPlace())
286
        res_1, res_2, res_3, res_4 = exe.run(
287
            main_prog,
288 289 290 291 292 293 294 295
            feed={"x": input,
                  "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
296

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_fluid_api(self):
        self._set_fluid_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

324

325
# Test Input Error
326
class TestReshapeOpError(unittest.TestCase):
327
    def _set_paddle_api(self):
J
joejiong 已提交
328
        self.data = paddle.static.data
329 330 331 332 333 334 335
        self.reshape = paddle.reshape

    def _set_fluid_api(self):
        self.data = fluid.data
        self.reshape = fluid.layers.reshape

    def _test_errors(self):
336 337 338 339
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
                x1 = fluid.create_lod_tensor(
J
joejiong 已提交
340
                    np.array([[-1]]), [[1]], paddle.CPUPlace())
341
                self.reshape(x1, shape=[1])
342 343 344

            self.assertRaises(TypeError, test_x_type)

345
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
346
            def test_x_dtype():
347
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
348
                self.reshape(x2, shape=[2, 5, 5])
349 350 351

            self.assertRaises(TypeError, test_x_dtype)

352
            def test_x_dtype_float16():
353 354 355
                x_float16 = self.data(
                    name="x_float16", shape=[2, 25], dtype="float16")
                self.reshape(x_float16, shape=[2, 5, 5])
356 357 358

            test_x_dtype_float16()

359
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
360 361 362

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
363
                self.reshape(x3, shape=1)
364 365 366 367 368

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
369
                self.reshape(x3, shape=[25, 2], actual_shape=1)
370 371 372 373 374

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
375
                self.reshape(x3, shape=[-1, -1, 5])
376 377 378 379 380

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
381
                self.reshape(x3, [2, 5, 5, 0])
382 383 384

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
385
            # The argument shape have more than one negative value.
386
            def test_shape_3():
387
                self.reshape(x3, [-1, -2, 5])
388 389 390

            self.assertRaises(AssertionError, test_shape_3)

391 392 393 394 395 396 397 398
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

    def test_fluid_api_error(self):
        self._set_fluid_api()
        self._test_errors()

399

J
joejiong 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
class API_TestDygraphReshape(unittest.TestCase):
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
        output = paddle.reshape(x=input, shape=[5, 10])
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
        output = paddle.reshape(x=input, shape=[5, 10])
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
        output = paddle.reshape(x=input, shape=[5, 10])
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))


Y
ying 已提交
429
if __name__ == "__main__":
Y
Yibing Liu 已提交
430
    unittest.main()