multi_trainer.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
T
tangwei12 已提交
18

T
tangwei12 已提交
19
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
20 21
#include "paddle/fluid/distributed/service/communicator.h"
#endif
22 23 24 25

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
26
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
27
                              Dataset* dataset) {
28
  thread_num_ = trainer_desc.thread_num();
29 30
  SetDataset(dataset);

H
hutuxian 已提交
31
  ParseDumpConfig(trainer_desc);
32 33 34 35
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();

36 37 38 39 40
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
T
Thunderbrook 已提交
41 42 43 44 45 46 47
#ifdef PADDLE_WITH_HETERPS
  for (int i = 0; i < thread_num_; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
  }
#endif
48
  // get filelist from trainer_desc here
J
jiaqi 已提交
49
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
50
      dataset->GetReaders();
51
  VLOG(3) << "readers num: " << readers.size();
52 53 54 55
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
56

T
tangwei12 已提交
57
#if defined PADDLE_WITH_PSCORE
58
  if (trainer_desc.thread_barrier()) {
T
tangwei12 已提交
59
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerReset(
60 61 62 63
        thread_num_);
  }
#endif

64 65 66
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
67 68 69 70 71
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
72
    workers_[i]->Initialize(trainer_desc);
73
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
74
    workers_[i]->SetDataFeed(readers[i]);
75
  }
D
dongdaxiang 已提交
76 77

  // set debug here
78
  SetDebug(trainer_desc.debug());
79 80
}

H
hutuxian 已提交
81
std::string MultiTrainer::GetDumpPath(int tid) {
Y
yaoxuefeng 已提交
82 83 84 85
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
H
hutuxian 已提交
86 87
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
104
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
105 106 107
  }
}

108 109 110 111
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
T
Thunderbrook 已提交
112 113 114 115
#ifdef PADDLE_WITH_HETERPS
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
#else
116
    workers_[i]->SetPlace(place);
117
    workers_[i]->SetReaderPlace(place);
T
Thunderbrook 已提交
118
#endif
119 120 121
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
T
Thunderbrook 已提交
122
    workers_[i]->CacheProgram(main_program);
123
  }
T
Thunderbrook 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef PADDLE_WITH_HETERPS
  for (int num = 0; num < thread_num_; ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        if (root_var->IsType<SelectedRows>()) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
#endif
148 149
}

150
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
X
xujiaqi01 已提交
151
  if (need_dump_field_ || need_dump_param_) {
152 153 154 155 156
    InitDumpEnv();
  }
  VLOG(3) << "init other env done.";
}

157 158 159 160
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

161
void MultiTrainer::Run() {
162
  VLOG(3) << "Going to run";
163
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
164 165 166 167 168 169 170
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
171 172 173 174 175 176
  }
  for (auto& th : threads_) {
    th.join();
  }
}

T
Thunderbrook 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef PADDLE_WITH_HETERPS
void MultiTrainer::MergeDenseParam() {
  auto communicator = paddle::distributed::Communicator::GetInstance();
  auto& recv_ctx = communicator->GetRecvCtxMap();
  Scope* thread_scope = workers_[0]->GetThreadScope();
  for (auto& iter : recv_ctx) {
    auto& varnames = iter.second;
    for (auto& name : varnames) {
      Variable* root_var = root_scope_->FindVar(name);
      LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
      Variable* var = thread_scope->FindVar(name);
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      TensorCopy((*tensor), root_tensor->place(), root_tensor);
    }
  }
}
#endif

template <typename T>
void MultiTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
  TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
  TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
  TensorCopy(tmp_root, platform::CPUPlace(), root_tensor);
}

209
void MultiTrainer::Finalize() {
X
xujiaqi01 已提交
210
  if (need_dump_field_ || need_dump_param_) {
211 212
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
#ifdef PADDLE_WITH_HETERPS
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();

    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
  MergeDenseParam();

#endif
248 249
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
250

251 252
}  // end namespace framework
}  // end namespace paddle