multi_trainer.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
20
#include "paddle/fluid/operators/distributed/distributed.h"
21 22 23 24

namespace paddle {
namespace framework {

D
dongdaxiang 已提交
25
void MultiTrainer::Initialize(const TrainerDesc& trainer_desc,
26
                              Dataset* dataset) {
27
  thread_num_ = trainer_desc.thread_num();
28 29
  SetDataset(dataset);

H
hutuxian 已提交
30
  ParseDumpConfig(trainer_desc);
31 32 33 34
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
  dump_file_num_ = trainer_desc.dump_file_num();

35 36 37 38 39
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
40
  // get filelist from trainer_desc here
J
jiaqi 已提交
41
  const std::vector<paddle::framework::DataFeed*> readers =
D
dongdaxiang 已提交
42
      dataset->GetReaders();
43
  VLOG(3) << "readers num: " << readers.size();
44 45 46 47
  // change thread num to readers num
  thread_num_ = readers.size();
  VLOG(3) << "worker thread num: " << thread_num_;
  workers_.resize(thread_num_);
48 49 50 51 52 53 54 55

#ifdef PADDLE_WITH_DISTRIBUTE
  if (trainer_desc.thread_barrier()) {
    operators::distributed::Communicator::GetInstance()->BarrierTriggerReset(
        thread_num_);
  }
#endif

56 57 58
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
H
hutuxian 已提交
59 60 61 62 63
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
D
dongdaxiang 已提交
64
    workers_[i]->Initialize(trainer_desc);
65
    workers_[i]->SetDeviceIndex(i);
D
dongdaxiang 已提交
66
    workers_[i]->SetDataFeed(readers[i]);
67
  }
D
dongdaxiang 已提交
68 69

  // set debug here
70
  SetDebug(trainer_desc.debug());
71 72
}

H
hutuxian 已提交
73 74 75
std::string MultiTrainer::GetDumpPath(int tid) {
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
}

void MultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
H
hutuxian 已提交
92
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
93 94 95
  }
}

96 97 98 99 100
// call only after all resources are set in current trainer
void MultiTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetPlace(place);
101
    workers_[i]->SetReaderPlace(place);
102 103 104 105 106 107
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
}

108 109 110 111 112 113 114
void MultiTrainer::InitOtherEnv(const ProgramDesc& main_program) {
  if (need_dump_field_) {
    InitDumpEnv();
  }
  VLOG(3) << "init other env done.";
}

115 116 117 118
Scope* MultiTrainer::GetWorkerScope(int thread_id) {
  return workers_[thread_id]->GetThreadScope();
}

119
void MultiTrainer::Run() {
120
  VLOG(3) << "Going to run";
121
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
122 123 124 125 126 127 128
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
129 130 131 132 133 134
  }
  for (auto& th : threads_) {
    th.join();
  }
}

135 136 137 138 139 140
void MultiTrainer::Finalize() {
  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
  root_scope_->DropKids();
}
D
Dong Daxiang 已提交
141

142 143
}  // end namespace framework
}  // end namespace paddle