- 15 4月, 2021 1 次提交
-
-
由 Thunderbrook 提交于
* pscore support heterps * fleet cmake * fleet wrapper * macro * solve conflict * solve conflict * add unitest * paddle enforce * unitest * unitest * unitest
-
- 04 2月, 2021 1 次提交
-
-
由 wanghuancoder 提交于
* use iwyu clean include second time, test=develop
-
- 12 1月, 2021 1 次提交
-
-
由 tangwei12 提交于
* rename sendrecv.proto to namespace paddle.distributed * split ps with distributed
-
- 24 12月, 2020 1 次提交
-
-
由 tangwei12 提交于
* oneps (3/4) Co-authored-by: NMrChengmo <cmchengmo@163.com> Co-authored-by: Nmalin10 <malin10@baidu.com> Co-authored-by: Nchengmo <chengmo@baidu.com>
-
- 27 11月, 2020 1 次提交
-
-
由 yaoxuefeng 提交于
-
- 06 8月, 2020 1 次提交
-
-
由 Thunderbrook 提交于
* add heter ps mode * code style test=develop * add with_pslib test=develop * unitest test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * code style test=develop * test monitor test=develop * prepare trainer test=develop * code style test=develop
-
- 03 8月, 2020 1 次提交
-
-
由 xujiaqi01 提交于
* fix dump, fix cvm check test=develop * fix test=develop * fix test=develop * fix test=develop
-
- 19 5月, 2020 1 次提交
-
-
由 hutuxian 提交于
* Refactor code for dump_field & dump_param: abstracting the common function in base class. * Support dump randomly & random with lineid * Support specify the random interval, which avoids printing too much logs.
-
- 17 2月, 2020 1 次提交
-
-
由 123malin 提交于
-
- 17 1月, 2020 1 次提交
-
-
由 tangwei12 提交于
* add half_async in the communicator * fix DistributedStrategy
-
- 24 11月, 2019 1 次提交
-
-
由 Dong Daxiang 提交于
* fix fetch handler problem and refactor when a user define FetchHandler class, he or she should initialize a handler with variable dict. the key of a variable dict is a user defined name, the value of a variable dict is a Varaible generated from python API. For each fetching, a user should implement handler function in which fetched_result_dict will be available and the user can access the fetched value with user defined keys.
-
- 07 10月, 2019 1 次提交
-
-
由 tangwei12 提交于
add executor.FetchHandler for train/infer from the dataset
-
- 30 8月, 2019 1 次提交
-
-
由 yaoxuefeng 提交于
* add thread scope stat accurate metrics test=develop * fix style * fix style * fix style * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix style test=develop * fix conflict * fix style * fix style test=develop * fix error test=develop * fix error test=develop
-
- 10 8月, 2019 1 次提交
-
-
由 hutuxian 提交于
* add a place field in DataFeed to denote which place it will feed data to. * abstract the copy process in CopyToFeedTensor function * add UT for float32 type and for CUDAPlace
-
- 21 6月, 2019 1 次提交
-
-
由 jiaqi 提交于
(1) use channel instead of vector/BlockingQueue in Dataset,to keep same with existing implementation, and make code more readable and flexible (dataset single output channel or multi output channel). one previous memory out of limit problem is cause by not release memory after training. (2) add Record because MultiSlotType costs too much memory (80B),fix memory out of limit problem. (3) add Channel, Archive in paddle/fluid/framework (4) change dataset from shared_ptr to unique_ptr in pybind (5) move create/destroy readers from trainer to dataset (6) move shuffle from datafeed to dataset. dataset holds memory, datafeed is only for load data and feed data to network. (7) fix thread num bug of Dataset when filelist size < thread num (8) support set_queue_num in InMemoryDataset
-
- 29 3月, 2019 15 次提交
-
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
-
由 xujiaqi01 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 xujiaqi01 提交于
-
由 xujiaqi01 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 xjqbest 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
-
由 dongdaxiang 提交于
test=develop
-
由 dongdaxiang 提交于
add dist_multi_trainer for distributed training, add trainer_factory and device_worker_factory so that we can easily extend new training mode, add pull dense worker which is a singleton for parameter fetching
-