elementwise_mul_mkldnn_op.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18 19 20

#include "paddle/fluid/platform/mkldnn_helper.h"

21
#include "paddle/fluid/operators/math/jit_kernel.h"
22
#ifdef PADDLE_WITH_XBYAK
23 24
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
25
#endif
26

27 28 29 30
namespace paddle {
namespace operators {

using framework::DataLayout;
31
using mkldnn::memory;
32
using platform::StringToMKLDNNFormat;
33 34

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
35 36
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
37
    auto format_as_string = ctx.Attr<std::string>(attribute);
38
    auto format = StringToMKLDNNFormat(&format_as_string);
39 40 41 42 43 44
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

45 46 47
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
48
                         const mkldnn::engine& engine, bool isFourDim) {
49 50 51 52 53 54
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
55 56 57 58 59 60
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
61 62 63 64
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
81
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
82

83 84
    UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
    UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
85

P
peizhilin 已提交
86
    const bool is_avx512_enabled = platform::MayIUse(platform::avx512f);
87 88 89
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
90 91
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
92 93
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
94

95 96 97 98 99
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
100

101 102 103 104
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
105

106 107
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
108

109 110
        constexpr int simd_width = 16;
        int C = c / simd_width;
111

112 113 114
        const auto& multiply =
            math::jitkernel::KernelPool::Instance()
                .template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
115

116
#pragma omp parallel for collapse(2)
117 118 119
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
120
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
121

122 123
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
124
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
125

126
            multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
127 128 129
          }
        }
      }
130 131 132

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
133 134
    } else {
      // Fallback to naive version:
135
      const bool are_inputs_in_same_format = x->format() == y->format();
136
      const bool is_x_nchw = x->format() == memory::format::nchw;
137
      const bool is_x_nc = x->format() == memory::format::nc;
138
      const bool is_y_nchw = y->format() == memory::format::nchw;
139
      const bool is_y_nc = y->format() == memory::format::nc;
140
      if (!are_inputs_in_same_format) {
141 142 143
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
144
        if (!(is_x_nchw || is_x_nc))
145
          ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
146 147
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
148
          ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
149
                          y->dims().size() == 4);
150 151
      }

152 153 154 155 156 157 158 159
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
176 177 178 179 180 181 182 183 184 185 186 187
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)