elementwise_mul_mkldnn_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18 19 20

#include "paddle/fluid/platform/mkldnn_helper.h"

21
#include "paddle/fluid/operators/math/jit_kernel.h"
22
#ifdef PADDLE_WITH_XBYAK
23 24
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
25
#endif
26

27 28 29 30
namespace paddle {
namespace operators {

using framework::DataLayout;
31
using mkldnn::memory;
32
using platform::StringToMKLDNNFormat;
33 34

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
35 36
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
37
    auto format_as_string = ctx.Attr<std::string>(attribute);
38
    auto format = StringToMKLDNNFormat(&format_as_string);
39 40 41 42 43 44
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

45 46 47
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
48
                         const mkldnn::engine& engine, bool isFourDim) {
49 50 51 52 53 54
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
55 56 57 58 59 60
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
61 62 63 64
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
81
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
82

83 84
    UpdateDataFormat(ctx, const_cast<Tensor*>(x), "x_data_format");
    UpdateDataFormat(ctx, const_cast<Tensor*>(y), "y_data_format");
85

86 87
    Xbyak::util::Cpu cpu;
    const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
88 89 90
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
91 92
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
93 94
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
95

96 97 98 99 100
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
101

102 103 104 105
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
106

107 108
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
109

110 111
        constexpr int simd_width = 16;
        int C = c / simd_width;
112

113 114 115
        const auto& multiply =
            math::jitkernel::KernelPool::Instance()
                .template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
116

117
#pragma omp parallel for collapse(2)
118 119 120
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
121
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
122

123 124
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
125
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
126

127
            multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
128 129 130
          }
        }
      }
131 132 133

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
134 135
    } else {
      // Fallback to naive version:
136
      const bool are_inputs_in_same_format = x->format() == y->format();
137
      const bool is_x_nchw = x->format() == memory::format::nchw;
138
      const bool is_x_nc = x->format() == memory::format::nc;
139
      const bool is_y_nchw = y->format() == memory::format::nchw;
140
      const bool is_y_nc = y->format() == memory::format::nc;
141
      if (!are_inputs_in_same_format) {
142 143 144
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
145
        if (!(is_x_nchw || is_x_nc))
146
          ReorderInput<T>(const_cast<Tensor*>(x), ctx.GetPlace(), mkldnn_engine,
147 148
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
149
          ReorderInput<T>(const_cast<Tensor*>(y), ctx.GetPlace(), mkldnn_engine,
150
                          y->dims().size() == 4);
151 152
      }

153 154 155 156 157 158 159 160
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
161

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
177 178 179 180 181 182 183 184 185 186 187 188
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)