elementwise_mul_mkldnn_op.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
18 19 20

#include "paddle/fluid/platform/mkldnn_helper.h"

21 22 23
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "xbyak.h"
#include "xbyak_util.h"
24

25 26 27 28
namespace paddle {
namespace operators {

using framework::DataLayout;
29
using mkldnn::memory;
30

31 32 33
static mkldnn::memory::format StringToMKLDNNFormat(std::string& format) {
  std::transform(format.begin(), format.end(), format.begin(), ::tolower);

34
  if (!format.compare("nchw")) {
35
    return memory::format::nchw;
36
  } else if (!format.compare("nchw16c")) {
37
    return memory::format::nChw16c;
38
  } else if (!format.compare("nchw8c")) {
39
    return memory::format::nChw8c;
40
  } else if (!format.compare("nhwc")) {
41 42 43 44 45 46 47
    return memory::format::nhwc;
  } else {
    return memory::format::any;
  }
}

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
48 49
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
50 51 52 53 54 55 56 57
    auto format_as_string = ctx.Attr<std::string>(attribute);
    auto format = StringToMKLDNNFormat(format_as_string);
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

58 59 60
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
61
                         const mkldnn::engine& engine, bool isFourDim) {
62 63 64 65 66 67
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
68 69 70 71 72 73
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
74 75 76 77
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
94
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
95

96 97
    UpdateDataFormat(ctx, (Tensor*)x, "x_data_format");
    UpdateDataFormat(ctx, (Tensor*)y, "y_data_format");
98

99 100
    Xbyak::util::Cpu cpu;
    const bool is_avx512_enabled = cpu.has(Xbyak::util::Cpu::tAVX512F);
101 102 103
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
104 105
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable &&
        is_avx512_enabled) {
106 107
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
108

109 110 111 112 113
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
114

115 116 117 118
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
119

120 121
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
122

123 124
        constexpr int simd_width = 16;
        int C = c / simd_width;
125

126 127 128
        const auto& multiply =
            math::jitkernel::KernelPool::Instance()
                .template Get<math::jitkernel::EltwiseMulnChw16cNCKernel<T>>(n);
129

130
#pragma omp parallel for collapse(2)
131 132 133
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
134
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
135

136 137
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
138
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
139

140
            multiply->Compute(ptr_x, ptr_y, ptr_z, h, w);
141 142 143
          }
        }
      }
144 145 146

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
147 148
    } else {
      // Fallback to naive version:
149
      const bool are_inputs_in_same_format = x->format() == y->format();
150
      const bool is_x_nchw = x->format() == memory::format::nchw;
151
      const bool is_x_nc = x->format() == memory::format::nc;
152
      const bool is_y_nchw = y->format() == memory::format::nchw;
153
      const bool is_y_nc = y->format() == memory::format::nc;
154
      if (!are_inputs_in_same_format) {
155 156 157
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
158 159 160 161 162 163
        if (!(is_x_nchw || is_x_nc))
          ReorderInput<T>((Tensor*)x, ctx.GetPlace(), mkldnn_engine,
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
          ReorderInput<T>((Tensor*)y, ctx.GetPlace(), mkldnn_engine,
                          y->dims().size() == 4);
164 165
      }

166 167 168 169 170 171 172 173
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
190 191 192 193 194 195 196 197 198 199 200 201
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)