layers.py 61.2 KB
Newer Older
Y
Yu Yang 已提交
1
import core
2 3
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
4
from initializer import Constant, Normal, Xavier, Initializer
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
6
import re
7
import cStringIO
Y
Yu Yang 已提交
8
from param_attr import ParamAttr
Y
Yu Yang 已提交
9

Q
QI JUN 已提交
10
__all__ = [
Y
Yu Yang 已提交
11
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
12
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
13
    'batch_norm', 'accuracy', 'split_lod_tensor', 'While'
Q
QI JUN 已提交
14
]
Y
Yu Yang 已提交
15 16


F
fengjiayi 已提交
17 18
def fc(input,
       size,
C
chengduoZH 已提交
19
       num_flatten_dims=1,
F
fengjiayi 已提交
20
       param_attr=None,
Q
QI JUN 已提交
21
       bias_attr=None,
F
fengjiayi 已提交
22
       act=None,
C
chengduoZH 已提交
23
       name=None,
24 25
       main_program=None,
       startup_program=None):
26 27 28 29 30 31
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
C
chengduoZH 已提交
32
       num_flatten_dims: Number of columns in input
33
       param_attr: The parameters/weights to the FC Layer
Q
QI JUN 已提交
34
       param_initializer: Initializer used for the weight/parameter. If None, XavierInitializer() is used
35
       bias_attr: The bias parameter for the FC layer
Q
QI JUN 已提交
36
       bias_initializer: Initializer used for the bias. If None, then ConstantInitializer() is used
37
       act: Activation to be applied to the output of FC layer
C
chengduoZH 已提交
38
       name: Name/alias of the function
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
54 55 56 57 58 59 60
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
61 62 63
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
64
        w = helper.create_parameter(
Y
Yu Yang 已提交
65
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Y
Yu Yang 已提交
66 67 68 69 70 71 72 73
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
74 75
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
76 77 78 79 80 81 82 83 84 85
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
Y
Yu Yang 已提交
86
    pre_activation = helper.append_bias_op(pre_bias)
Y
Yu Yang 已提交
87 88 89 90
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
91 92
def embedding(input,
              size,
93
              is_sparse=False,
Q
QI JUN 已提交
94
              param_attr=None,
F
fengjiayi 已提交
95
              dtype='float32',
96 97
              main_program=None,
              startup_program=None):
98 99 100 101
    """
    Embedding Layer.

    Args:
Y
Yu Yang 已提交
102
       param_initializer:
103 104 105 106
       input: The input to the function
       size: The size of the layer
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
F
fengjiayi 已提交
107
       dtype: The type of data : float32, float_16, int etc
108 109 110 111 112 113 114 115 116 117 118
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
Qiao Longfei 已提交
119

Q
QI JUN 已提交
120 121
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
Y
Yu Yang 已提交
122
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
F
fengjiayi 已提交
123
    tmp = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
124 125 126 127
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
128 129
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
130 131 132
    return tmp


Q
QI JUN 已提交
133 134 135 136 137 138 139 140 141 142
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
F
fengjiayi 已提交
143
                 dtype='float32',
Q
QI JUN 已提交
144 145 146 147 148
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
F
fengjiayi 已提交
149
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
Q
QI JUN 已提交
150 151 152 153
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
Y
Yu Yang 已提交
154
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Q
QI JUN 已提交
155

F
fengjiayi 已提交
156 157 158 159
    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
182 183
def data(name,
         shape,
C
chengduoZH 已提交
184
         append_batch_size=True,
F
fengjiayi 已提交
185
         dtype='float32',
Y
Yu Yang 已提交
186
         lod_level=0,
F
fengjiayi 已提交
187
         type=core.VarDesc.VarType.LOD_TENSOR,
188
         main_program=None,
189 190
         startup_program=None,
         stop_gradient=True):
191 192 193 194 195 196
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
C
chengduoZH 已提交
197
       append_batch_size: Whether or not to append the data as a batch.
F
fengjiayi 已提交
198
       dtype: The type of data : float32, float_16, int etc
199
       type: The output type. By default it is LOD_TENSOR.
Y
Yu Yang 已提交
200
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
201 202 203 204 205 206 207 208 209 210 211 212 213
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
214
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
215 216 217 218 219 220 221 222
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
223 224
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
225

Y
Yu Yang 已提交
226
    return helper.create_global_variable(
227 228
        name=name,
        shape=shape,
F
fengjiayi 已提交
229
        dtype=dtype,
230
        type=type,
Y
Yu Yang 已提交
231 232
        stop_gradient=stop_gradient,
        lod_level=lod_level)
Y
Yu Yang 已提交
233 234


Y
Yu Yang 已提交
235
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
Y
Yu Yang 已提交
236 237
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
238 239 240


def _convert_(name):
241 242 243 244 245 246 247 248 249 250 251
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
252 253 254 255
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


256 257 258
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
308
def _create_op_func_(op_type):
309 310 311 312 313 314 315 316 317 318
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
319
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
320 321 322 323 324 325
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
326 327
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
328

329
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
330
        raise ValueError(
331
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
332

333 334
    for output in intermediate_outputs:
        if output.duplicable:
335 336
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
337 338 339

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
340

F
fengjiayi 已提交
341
    def infer_and_check_dtype(op_proto, **kwargs):
342
        """
F
fengjiayi 已提交
343
        This function performs the sanity check for dtype and
344 345
        instance type.
        """
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353 354 355 356 357
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
F
fengjiayi 已提交
358 359
                    dtype = each.dtype
                elif dtype != each.dtype:
Y
Yu Yang 已提交
360 361
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
362 363 364 365 366 367

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

F
fengjiayi 已提交
368
        dtype = infer_and_check_dtype(op_proto, **kwargs)
Y
Yang Yang(Tony) 已提交
369 370 371 372 373 374 375

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
376 377
            inputs[ipt.name] = val

378
        outputs = dict()
Y
Yu Yang 已提交
379
        out = helper.create_tmp_variable(dtype=dtype)
380 381 382
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
383
        helper.append_op(
384
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
385
        return helper.append_activation(out)
Y
Yu Yang 已提交
386 387 388

    func.__name__ = op_type
    globals()[op_type] = func
389
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
390 391 392 393 394
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
395
_create_op_func_('mul')
Q
Qiao Longfei 已提交
396
_create_op_func_('elementwise_add')
Y
Yu Yang 已提交
397
_create_op_func_('elementwise_div')
398
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
399
_create_op_func_('reshape')
Y
Yu Yang 已提交
400 401
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
402 403
_create_op_func_('reshape')
_create_op_func_('transpose')
404
_create_op_func_('sigmoid_cross_entropy_with_logits')
Y
Yang Yang(Tony) 已提交
405 406


F
fengjiayi 已提交
407
def cast(x, dtype, main_program=None):
408
    """
F
fengjiayi 已提交
409 410
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
411
    """
Y
Yu Yang 已提交
412
    helper = LayerHelper('cast', **locals())
F
fengjiayi 已提交
413
    out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
414 415 416 417
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
F
fengjiayi 已提交
418 419
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
Y
Yu Yang 已提交
420 421 422
    return out


423
def concat(input, axis, main_program=None, startup_program=None):
424 425 426 427
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
428
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
429
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
430 431 432 433 434 435 436 437
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yu Yang 已提交
438
def sums(input, out=None, main_program=None, startup_program=None):
439 440 441 442
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
443
    helper = LayerHelper('sum', **locals())
Y
Yu Yang 已提交
444 445
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
446
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
447 448 449
    return out


Q
Qiao Longfei 已提交
450 451 452 453 454 455 456 457 458 459
def linear_chain_crf(input,
                     label,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
Y
Yu Yang 已提交
460
        dtype=helper.input_dtype())
Q
Qiao Longfei 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Q
Qiao Longfei 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
def crf_decoding(input,
                 param_attr,
                 label=None,
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
Yu Yang 已提交
498
def assign(input, output, main_program=None, startup_program=None):
Y
Yu Yang 已提交
499 500 501 502 503 504 505 506 507
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


508 509
def split_lod_tensor(input,
                     mask,
Y
Yu Yang 已提交
510
                     level=0,
511 512 513
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
514 515
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
Y
Yu Yang 已提交
532
                     level=0,
533 534 535
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
536
    out = helper.create_tmp_variable(dtype=in_true.dtype)
537 538 539 540 541 542 543 544 545 546 547
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


548
def cos_sim(X, Y, **kwargs):
549 550 551 552
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
553
    helper = LayerHelper('cos_sim', **kwargs)
F
fengjiayi 已提交
554 555 556
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
D
dzhwinter 已提交
557 558 559 560 561 562 563
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
564
    return out
D
dzhwinter 已提交
565 566


Y
Yu Yang 已提交
567
def cross_entropy(input, label, **kwargs):
568 569 570
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
571
    helper = LayerHelper('cross_entropy', **kwargs)
F
fengjiayi 已提交
572
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
573 574 575 576 577 578 579 580 581 582
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
583 584 585 586
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
587
    helper = LayerHelper('square_error_cost', **kwargs)
F
fengjiayi 已提交
588
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
589 590 591 592 593 594
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

F
fengjiayi 已提交
595
    square_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
596
    helper.append_op(
Q
QI JUN 已提交
597
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
598
    return square_out
599 600


Y
Yu Yang 已提交
601
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
602 603 604 605
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
606
    helper = LayerHelper("accuracy", **kwargs)
F
fengjiayi 已提交
607
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
F
fengjiayi 已提交
608 609 610 611 612 613 614
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
D
Dong Zhihong 已提交
615
    acc_out = helper.create_tmp_variable(dtype="float32")
Y
Yu Yang 已提交
616 617 618 619
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
620 621
    helper.append_op(
        type="accuracy",
武毅 已提交
622 623 624 625 626
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
627 628 629 630 631
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
632 633 634
    return acc_out


Q
Qiao Longfei 已提交
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
               excluded_chunk_types=None,
               **kwargs):
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
    helper = LayerHelper("chunk_eval", **kwargs)

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
            "F1-Score": [f1_score]
        },
        attrs={
            "num_chunk_types": num_chunk_types,
            'chunk_scheme': chunk_scheme,
            'excluded_chunk_types': excluded_chunk_types or []
        })
    return precision, recall, f1_score


D
dzhwinter 已提交
669 670 671
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
672
                  filter_stride=1,
D
dzhwinter 已提交
673 674 675
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduoZH 已提交
676
                  act=None,
677 678
                  main_program=None,
                  startup_program=None):
679 680 681 682 683
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
684

D
dzhwinter 已提交
685 686 687 688 689 690
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
D
dzhwinter 已提交
691
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
692
    filter = helper.create_parameter(
Y
Yu Yang 已提交
693
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
D
dzhwinter 已提交
694 695 696 697 698 699
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
700
            'Filter': [filter],
D
dzhwinter 已提交
701 702 703
        },
        outputs={"Out": pre_bias},
        attrs={
704
            'contextStride': filter_stride,
705
            'contextStart': -int(filter_size / 2),
706
            'contextLength': filter_size
D
dzhwinter 已提交
707
        })
Y
Yu Yang 已提交
708
    pre_act = helper.append_bias_op(pre_bias)
D
dzhwinter 已提交
709 710 711
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
712 713
def conv2d(input,
           num_filters,
C
chengduoZH 已提交
714
           filter_size,
F
fengjiayi 已提交
715 716
           stride=[1, 1],
           padding=None,
C
chengduoZH 已提交
717
           groups=None,
F
fengjiayi 已提交
718
           param_attr=None,
C
chengduoZH 已提交
719 720 721
           bias_attr=None,
           act=None,
           name=None,
722 723
           main_program=None,
           startup_program=None):
724 725 726 727 728 729 730
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
731

732 733 734 735 736 737 738
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
739
        if num_channels % groups != 0:
740 741 742
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
743 744 745 746 747 748 749
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

750 751
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
752

Y
Yu Yang 已提交
753 754 755
    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)
756

757
    filter = helper.create_parameter(
758 759 760
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
Y
Yu Yang 已提交
761 762
        default_initializer=_get_default_param_initializer())

763 764 765 766 767 768 769 770 771 772 773 774 775
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
776
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
777 778

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
779 780


D
dzhwinter 已提交
781
def sequence_pool(input, pool_type, **kwargs):
782 783 784 785 786
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
787
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
788 789
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
790
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
791 792 793

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
794 795 796
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
797
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
798 799 800 801

    return pool_out


F
fengjiayi 已提交
802 803 804 805 806 807
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
808 809
           main_program=None,
           startup_program=None):
810 811 812 813
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
814 815 816 817 818 819 820 821 822 823 824
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
825
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
826 827 828 829 830 831 832 833
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
834
            "pooling_type": pool_type,
F
fengjiayi 已提交
835
            "ksize": pool_size,
C
chengduoZH 已提交
836
            "global_pooling": global_pooling,
F
fengjiayi 已提交
837 838 839 840 841
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
842 843


Q
Qiao Longfei 已提交
844 845 846 847
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
848
               epsilon=1e-05,
Q
Qiao Longfei 已提交
849 850 851
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
852 853
               main_program=None,
               startup_program=None):
854 855 856 857
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
874 875 876
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
Y
Yu Yang 已提交
877 878
        default_initializer=Constant(1.0))

Q
Qiao Longfei 已提交
879
    bias = helper.create_parameter(
Y
Yu Yang 已提交
880
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True)
881 882

    mean = helper.create_global_variable(
F
fengjiayi 已提交
883
        dtype=input.dtype, shape=param_shape, persistable=True)
884
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))
885 886

    variance = helper.create_global_variable(
F
fengjiayi 已提交
887
        dtype=input.dtype, shape=param_shape, persistable=True)
888
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))
Q
Qiao Longfei 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


923 924
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
F
fengjiayi 已提交
925 926
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
927 928 929 930 931 932 933 934 935 936 937 938 939

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
940 941
class BlockGuard(object):
    """
942 943 944 945
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
946 947
    """

948 949
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
950
            raise TypeError("BlockGuard takes a program")
951
        self.main_program = main_program
Y
Yu Yang 已提交
952 953

    def __enter__(self):
954
        self.main_program.create_block()
Y
Yu Yang 已提交
955 956

    def __exit__(self, exc_type, exc_val, exc_tb):
957
        self.main_program.rollback()
Y
Yu Yang 已提交
958 959 960 961 962 963
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
964 965 966 967 968 969
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
970 971
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
972
            raise TypeError("StaticRNNGuard takes a StaticRNN")
973
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
974 975 976 977 978 979 980
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
981 982
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
983 984 985 986 987 988 989
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
990 991 992 993 994 995 996 997 998 999 1000 1001
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
1011 1012 1013 1014 1015 1016
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
1017 1018 1019 1020
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

1021 1022 1023
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

1038 1039 1040 1041 1042 1043 1044
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
1045 1046 1047 1048 1049 1050 1051 1052 1053
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1054 1055
        self._assert_in_rnn_block_('memory')
        if init is None:
1056
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1057
                raise ValueError(
1058
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1059 1060 1061
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1062 1063
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
1064
                dtype=batch_ref.dtype,
1065
                persistable=False)
Y
Yu Yang 已提交
1066 1067

            parent_block.append_op(
1068 1069
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1070 1071 1072
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1073
                    'shape': boot_var.shape,
F
fengjiayi 已提交
1074
                    'dtype': boot_var.dtype,
1075 1076
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1077 1078 1079 1080 1081 1082
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
1083
                dtype=init.dtype,
Y
Yu Yang 已提交
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1094 1095
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1096 1097 1098
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
1099
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
1100 1101 1102 1103 1104 1105 1106 1107
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
1108
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
1109 1110 1111 1112
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
1113
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
1114

Y
Yu Yang 已提交
1115
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1116 1117
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
1118
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1132
        prog = self.helper.main_program
Y
Yu Yang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1149 1150
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
1190
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
1191 1192 1193 1194 1195

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
1196
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1214 1215


Y
Yang Yang(Tony) 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
1246
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1292 1293 1294 1295 1296 1297
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1298 1299 1300 1301
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

F
fengjiayi 已提交
1318 1319 1320
        dtype = x.dtype
        c = helper.create_tmp_variable(dtype)
        h = helper.create_tmp_variable(dtype)
Y
Yang Yang(Tony) 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1336
def lod_rank_table(x, level=0, main_program=None):
1337 1338 1339 1340
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1351 1352


F
fengjiayi 已提交
1353 1354
def max_sequence_len(rank_table, main_program=None):
    """
Y
Yu Yang 已提交
1355
    This function creates an operator to calculate the length of
F
fengjiayi 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    max seqence through input rank_table(should be a lod_rank_table)
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


Y
Yu Yang 已提交
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
def topk(input, k, main_program=None, startup_program=None):
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


1380
def lod_tensor_to_array(x, table, main_program=None):
1381 1382 1383 1384
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1385 1386 1387
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1388
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1389
        dtype=x.dtype)
1390 1391 1392 1393 1394 1395 1396 1397 1398
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1399 1400 1401 1402
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1403
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
1404
    tmp = helper.create_tmp_variable(dtype=x.dtype)
1405 1406 1407 1408 1409 1410 1411 1412
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1413 1414 1415 1416 1417 1418
def fill_constant(shape,
                  dtype,
                  value,
                  out=None,
                  main_program=None,
                  startup_program=None):
1419 1420
    """
    This function creates a tensor , with shape as mentioned in the input and
F
fengjiayi 已提交
1421
    specified dtype and fills this up with a constant value that
1422 1423
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1424
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1425 1426
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
1427 1428 1429 1430
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
F
fengjiayi 已提交
1431 1432 1433
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
Y
Yu Yang 已提交
1434 1435 1436 1437
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
                                  output_dim_idx=0,
                                  main_program=None,
                                  startup_program=None):
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
F
fengjiayi 已提交
1454
            'dtype': out.dtype,
Y
Yu Yang 已提交
1455 1456 1457 1458 1459 1460 1461 1462
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1463
def ones(shape, dtype, main_program=None):
1464 1465 1466 1467
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1468 1469 1470 1471
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1472 1473 1474 1475
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1476 1477 1478
    return fill_constant(value=0.0, **locals())


1479
def increment(x, value=1.0, in_place=True, main_program=None):
1480 1481 1482 1483 1484
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1485
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1486
    if not in_place:
F
fengjiayi 已提交
1487
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1488 1489
    else:
        out = x
Y
Yu Yang 已提交
1490 1491 1492
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1493
        outputs={'Out': [out]},
1494
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1495
    return out
Y
Yu Yang 已提交
1496 1497 1498


def array_write(x, i, array=None, main_program=None):
1499 1500 1501 1502
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1503 1504 1505 1506 1507
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1508
            dtype=x.dtype)
Y
Yu Yang 已提交
1509 1510 1511 1512 1513 1514 1515 1516
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1517 1518 1519 1520 1521 1522 1523 1524
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
Yu Yang 已提交
1525
def less_than(x, y, cond=None, main_program=None, **ignored):
Y
Yang Yang(Tony) 已提交
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1537
def array_read(array, i, main_program=None):
1538 1539 1540 1541
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1542 1543 1544 1545 1546
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1547
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1554 1555 1556


def shrink_memory(x, i, table, main_program=None):
1557 1558 1559 1560
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1561
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1562
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1563
    helper.append_op(
Y
Yang Yu 已提交
1564
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1565 1566 1567 1568 1569 1570
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1571 1572 1573


def array_length(array, main_program=None):
1574 1575 1576 1577
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1578 1579 1580 1581 1582 1583
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1584 1585


1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    """
    The transpose of conv2d layer.
Y
Yu Yang 已提交
1597

1598
    This layer is also known as deconvolution layer.
Y
Yu Yang 已提交
1599

1600 1601 1602 1603 1604
    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
Y
Yu Yang 已提交
1605
            tuple, it must contain two integers, (image_H, image_W). This
1606 1607 1608 1609 1610 1611
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
Y
Yu Yang 已提交
1612
            contain two integers, (padding_H, padding_W). Otherwise, the
1613 1614 1615 1616 1617 1618
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
        param_attr: Parameter Attribute.
        main_program(Program): the main program
Y
Yu Yang 已提交
1619
        startup_program(Program): the startup program
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
        op_attr['strides'] = stride
    elif stride is not None:
        op_attr['strides'] = stride

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])

        h_in = input.shape[2]
        w_in = input.shape[3]
        filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0]
        filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1]
        filter_size = [filter_size_h, filter_size_w]
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
Y
Yu Yang 已提交
1660
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
1661 1662 1663 1664 1665 1666 1667 1668

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)
Y
Yu Yang 已提交
1669

1670 1671 1672
    return out


Y
Yu Yang 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yu Yang 已提交
1690 1691 1692 1693 1694
    def __init__(self,
                 inputs,
                 name=None,
                 main_program=None,
                 startup_program=None):
Y
Yu Yang 已提交
1695 1696 1697 1698 1699
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
Y
Yu Yang 已提交
1700 1701 1702 1703
            'conditional_block',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
Y
Yu Yang 已提交
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})
Y
Yu Yang 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

    def __init__(self, cond, name=None, main_program=None,
                 startup_program=None):
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
        self.helper = LayerHelper(
            'ifelse',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1811
                dtype=x.dtype)
Y
Yu Yang 已提交
1812 1813 1814

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1815
                dtype=x.dtype)
Y
Yu Yang 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
1857
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
            out_table.append(outside_out)

            # assign local var to outside
            assign(
                input=each_out,
                output=outside_out,
                main_program=self.helper.main_program,
                startup_program=self.helper.startup_program)

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                    main_program=self.helper.main_program,
                    startup_program=self.helper.startup_program))
        return rlist