layers.py 59.6 KB
Newer Older
Y
Yu Yang 已提交
1
import core
2 3
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
4
from initializer import Constant, Normal, Xavier, Initializer
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
6
import re
7
import cStringIO
Y
Yu Yang 已提交
8
from param_attr import ParamAttr
Y
Yu Yang 已提交
9

Q
QI JUN 已提交
10
__all__ = [
Y
Yu Yang 已提交
11
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
12
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
13
    'batch_norm', 'accuracy', 'split_lod_tensor', 'While'
Q
QI JUN 已提交
14
]
Y
Yu Yang 已提交
15 16


F
fengjiayi 已提交
17 18
def fc(input,
       size,
C
chengduoZH 已提交
19
       num_flatten_dims=1,
F
fengjiayi 已提交
20
       param_attr=None,
Q
QI JUN 已提交
21
       bias_attr=None,
F
fengjiayi 已提交
22
       act=None,
C
chengduoZH 已提交
23
       name=None,
24 25
       main_program=None,
       startup_program=None):
26 27 28 29 30 31
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
C
chengduoZH 已提交
32
       num_flatten_dims: Number of columns in input
33
       param_attr: The parameters/weights to the FC Layer
Q
QI JUN 已提交
34
       param_initializer: Initializer used for the weight/parameter. If None, XavierInitializer() is used
35
       bias_attr: The bias parameter for the FC layer
Q
QI JUN 已提交
36
       bias_initializer: Initializer used for the bias. If None, then ConstantInitializer() is used
37
       act: Activation to be applied to the output of FC layer
C
chengduoZH 已提交
38
       name: Name/alias of the function
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
54 55 56 57 58 59 60
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
61 62 63
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
64
        w = helper.create_parameter(
Y
Yu Yang 已提交
65
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Y
Yu Yang 已提交
66 67 68 69 70 71 72 73
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
74 75
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
76 77 78 79 80 81 82 83 84 85
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
Y
Yu Yang 已提交
86
    pre_activation = helper.append_bias_op(pre_bias)
Y
Yu Yang 已提交
87 88 89 90
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
91 92
def embedding(input,
              size,
93
              is_sparse=False,
Q
QI JUN 已提交
94
              param_attr=None,
F
fengjiayi 已提交
95
              dtype='float32',
96 97
              main_program=None,
              startup_program=None):
98 99 100 101
    """
    Embedding Layer.

    Args:
Y
Yu Yang 已提交
102
       param_initializer:
103 104 105 106
       input: The input to the function
       size: The size of the layer
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
F
fengjiayi 已提交
107
       dtype: The type of data : float32, float_16, int etc
108 109 110 111 112 113 114 115 116 117 118
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
Qiao Longfei 已提交
119

Q
QI JUN 已提交
120 121
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
Y
Yu Yang 已提交
122
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
F
fengjiayi 已提交
123
    tmp = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
124 125 126 127
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
128 129
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
130 131 132
    return tmp


Q
QI JUN 已提交
133 134 135 136 137 138 139 140 141 142
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
F
fengjiayi 已提交
143
                 dtype='float32',
Q
QI JUN 已提交
144 145 146 147 148
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
F
fengjiayi 已提交
149
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
Q
QI JUN 已提交
150 151 152 153
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
Y
Yu Yang 已提交
154
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Q
QI JUN 已提交
155

F
fengjiayi 已提交
156 157 158 159
    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
182 183
def data(name,
         shape,
C
chengduoZH 已提交
184
         append_batch_size=True,
F
fengjiayi 已提交
185
         dtype='float32',
Y
Yu Yang 已提交
186
         lod_level=0,
F
fengjiayi 已提交
187
         type=core.VarDesc.VarType.LOD_TENSOR,
188
         main_program=None,
189 190
         startup_program=None,
         stop_gradient=True):
191 192 193 194 195 196
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
C
chengduoZH 已提交
197
       append_batch_size: Whether or not to append the data as a batch.
F
fengjiayi 已提交
198
       dtype: The type of data : float32, float_16, int etc
199
       type: The output type. By default it is LOD_TENSOR.
Y
Yu Yang 已提交
200
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
201 202 203 204 205 206 207 208 209 210 211 212 213
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
214
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
215 216 217 218 219 220 221 222
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
223 224
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
225

Y
Yu Yang 已提交
226
    return helper.create_global_variable(
227 228
        name=name,
        shape=shape,
F
fengjiayi 已提交
229
        dtype=dtype,
230
        type=type,
Y
Yu Yang 已提交
231 232
        stop_gradient=stop_gradient,
        lod_level=lod_level)
Y
Yu Yang 已提交
233 234


Y
Yu Yang 已提交
235
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
Y
Yu Yang 已提交
236 237
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
238 239 240


def _convert_(name):
241 242 243 244 245 246 247 248 249 250 251
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
252 253 254 255
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


256 257 258
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
308
def _create_op_func_(op_type):
309 310 311 312 313 314 315 316 317 318
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
319
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
320 321 322 323 324 325
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
326 327
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
328

329
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
330
        raise ValueError(
331
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
332

333 334
    for output in intermediate_outputs:
        if output.duplicable:
335 336
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
337 338 339

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
340

F
fengjiayi 已提交
341
    def infer_and_check_dtype(op_proto, **kwargs):
342
        """
F
fengjiayi 已提交
343
        This function performs the sanity check for dtype and
344 345
        instance type.
        """
Y
Yu Yang 已提交
346 347 348 349 350 351 352 353 354 355 356 357
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
F
fengjiayi 已提交
358 359
                    dtype = each.dtype
                elif dtype != each.dtype:
Y
Yu Yang 已提交
360 361
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
362 363 364 365 366 367

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

F
fengjiayi 已提交
368
        dtype = infer_and_check_dtype(op_proto, **kwargs)
Y
Yang Yang(Tony) 已提交
369 370 371 372 373 374 375

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
376 377
            inputs[ipt.name] = val

378
        outputs = dict()
Y
Yu Yang 已提交
379
        out = helper.create_tmp_variable(dtype=dtype)
380 381 382
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
383
        helper.append_op(
384
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
385
        return helper.append_activation(out)
Y
Yu Yang 已提交
386 387 388

    func.__name__ = op_type
    globals()[op_type] = func
389
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
390 391 392 393 394
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
395
_create_op_func_('mul')
Q
Qiao Longfei 已提交
396
_create_op_func_('elementwise_add')
Y
Yu Yang 已提交
397
_create_op_func_('elementwise_div')
398
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
399
_create_op_func_('reshape')
Y
Yu Yang 已提交
400 401
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
402 403
_create_op_func_('reshape')
_create_op_func_('transpose')
404
_create_op_func_('sigmoid_cross_entropy_with_logits')
Y
Yang Yang(Tony) 已提交
405 406


F
fengjiayi 已提交
407
def cast(x, dtype, main_program=None):
408
    """
F
fengjiayi 已提交
409 410
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
411
    """
Y
Yu Yang 已提交
412
    helper = LayerHelper('cast', **locals())
F
fengjiayi 已提交
413
    out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
414 415 416 417
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
F
fengjiayi 已提交
418 419
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
Y
Yu Yang 已提交
420 421 422
    return out


423
def concat(input, axis, main_program=None, startup_program=None):
424 425 426 427
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
428
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
429
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
430 431 432 433 434 435 436 437
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yu Yang 已提交
438
def sums(input, out=None, main_program=None, startup_program=None):
439 440 441 442
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
443
    helper = LayerHelper('sum', **locals())
Y
Yu Yang 已提交
444 445
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
446
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
447 448 449
    return out


Q
Qiao Longfei 已提交
450 451 452 453 454 455 456 457 458 459
def linear_chain_crf(input,
                     label,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
Y
Yu Yang 已提交
460
        dtype=helper.input_dtype())
Q
Qiao Longfei 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
Yu Yang 已提交
480
def assign(input, output, main_program=None, startup_program=None):
Y
Yu Yang 已提交
481 482 483 484 485 486 487 488 489
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


490 491
def split_lod_tensor(input,
                     mask,
Y
Yu Yang 已提交
492
                     level=0,
493 494 495
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
496 497
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
Y
Yu Yang 已提交
514
                     level=0,
515 516 517
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
518
    out = helper.create_tmp_variable(dtype=in_true.dtype)
519 520 521 522 523 524 525 526 527 528 529
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


530
def cos_sim(X, Y, **kwargs):
531 532 533 534
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
535
    helper = LayerHelper('cos_sim', **kwargs)
F
fengjiayi 已提交
536 537 538
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
D
dzhwinter 已提交
539 540 541 542 543 544 545
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
546
    return out
D
dzhwinter 已提交
547 548


Y
Yu Yang 已提交
549
def cross_entropy(input, label, **kwargs):
550 551 552
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
553
    helper = LayerHelper('cross_entropy', **kwargs)
F
fengjiayi 已提交
554
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
555 556 557 558 559 560 561 562 563 564
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
565 566 567 568
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
569
    helper = LayerHelper('square_error_cost', **kwargs)
F
fengjiayi 已提交
570
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
571 572 573 574 575 576
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

F
fengjiayi 已提交
577
    square_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
578
    helper.append_op(
Q
QI JUN 已提交
579
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
580
    return square_out
581 582


Y
Yu Yang 已提交
583
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
584 585 586 587
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
588
    helper = LayerHelper("accuracy", **kwargs)
F
fengjiayi 已提交
589
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
F
fengjiayi 已提交
590 591 592 593 594 595 596
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
D
Dong Zhihong 已提交
597
    acc_out = helper.create_tmp_variable(dtype="float32")
Y
Yu Yang 已提交
598 599 600 601
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
602 603
    helper.append_op(
        type="accuracy",
武毅 已提交
604 605 606 607 608
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
609 610 611 612 613
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
614 615 616
    return acc_out


D
dzhwinter 已提交
617 618 619
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
620
                  filter_stride=1,
D
dzhwinter 已提交
621 622 623
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduoZH 已提交
624
                  act=None,
625 626
                  main_program=None,
                  startup_program=None):
627 628 629 630 631
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
632

D
dzhwinter 已提交
633 634 635 636 637 638
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
D
dzhwinter 已提交
639
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
640
    filter = helper.create_parameter(
Y
Yu Yang 已提交
641
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
D
dzhwinter 已提交
642 643 644 645 646 647
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
648
            'Filter': [filter],
D
dzhwinter 已提交
649 650 651
        },
        outputs={"Out": pre_bias},
        attrs={
652
            'contextStride': filter_stride,
653
            'contextStart': -int(filter_size / 2),
654
            'contextLength': filter_size
D
dzhwinter 已提交
655
        })
Y
Yu Yang 已提交
656
    pre_act = helper.append_bias_op(pre_bias)
D
dzhwinter 已提交
657 658 659
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
660 661
def conv2d(input,
           num_filters,
C
chengduoZH 已提交
662
           filter_size,
F
fengjiayi 已提交
663 664
           stride=[1, 1],
           padding=None,
C
chengduoZH 已提交
665
           groups=None,
F
fengjiayi 已提交
666
           param_attr=None,
C
chengduoZH 已提交
667 668 669
           bias_attr=None,
           act=None,
           name=None,
670 671
           main_program=None,
           startup_program=None):
672 673 674 675 676 677 678
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
679

680 681 682 683 684 685 686
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
687
        if num_channels % groups != 0:
688 689 690
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
691 692 693 694 695 696 697
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

698 699
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
700

Y
Yu Yang 已提交
701 702 703
    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)
704

705
    filter = helper.create_parameter(
706 707 708
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
Y
Yu Yang 已提交
709 710
        default_initializer=_get_default_param_initializer())

711 712 713 714 715 716 717 718 719 720 721 722 723
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
724
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
725 726

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
727 728


D
dzhwinter 已提交
729
def sequence_pool(input, pool_type, **kwargs):
730 731 732 733 734
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
735
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
736 737
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
738
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
739 740 741

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
742 743 744
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
745
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
746 747 748 749

    return pool_out


F
fengjiayi 已提交
750 751 752 753 754 755
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
756 757
           main_program=None,
           startup_program=None):
758 759 760 761
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
762 763 764 765 766 767 768 769 770 771 772
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
773
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
774 775 776 777 778 779 780 781
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
782
            "pooling_type": pool_type,
F
fengjiayi 已提交
783
            "ksize": pool_size,
C
chengduoZH 已提交
784
            "global_pooling": global_pooling,
F
fengjiayi 已提交
785 786 787 788 789
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
790 791


Q
Qiao Longfei 已提交
792 793 794 795
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
796
               epsilon=1e-05,
Q
Qiao Longfei 已提交
797 798 799
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
800 801
               main_program=None,
               startup_program=None):
802 803 804 805
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
822 823 824
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
Y
Yu Yang 已提交
825 826
        default_initializer=Constant(1.0))

Q
Qiao Longfei 已提交
827
    bias = helper.create_parameter(
Y
Yu Yang 已提交
828
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True)
829 830

    mean = helper.create_global_variable(
F
fengjiayi 已提交
831
        dtype=input.dtype, shape=param_shape, persistable=True)
832
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))
833 834

    variance = helper.create_global_variable(
F
fengjiayi 已提交
835
        dtype=input.dtype, shape=param_shape, persistable=True)
836
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))
Q
Qiao Longfei 已提交
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


871 872
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
F
fengjiayi 已提交
873 874
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
875 876 877 878 879 880 881 882 883 884 885 886 887

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
888 889
class BlockGuard(object):
    """
890 891 892 893
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
894 895
    """

896 897
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
898
            raise TypeError("BlockGuard takes a program")
899
        self.main_program = main_program
Y
Yu Yang 已提交
900 901

    def __enter__(self):
902
        self.main_program.create_block()
Y
Yu Yang 已提交
903 904

    def __exit__(self, exc_type, exc_val, exc_tb):
905
        self.main_program.rollback()
Y
Yu Yang 已提交
906 907 908 909 910 911
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
912 913 914 915 916 917
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
918 919
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
920
            raise TypeError("StaticRNNGuard takes a StaticRNN")
921
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
922 923 924 925 926 927 928
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
929 930
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
931 932 933 934 935 936 937
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
938 939 940 941 942 943 944 945 946 947 948 949
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
950 951 952 953 954 955 956 957 958
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
959 960 961 962 963 964
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
965 966 967 968
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

969 970 971
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
972 973 974 975 976 977 978 979 980 981 982 983 984 985
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

986 987 988 989 990 991 992
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
993 994 995 996 997 998 999 1000 1001
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1002 1003
        self._assert_in_rnn_block_('memory')
        if init is None:
1004
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1005
                raise ValueError(
1006
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1007 1008 1009
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1010 1011
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
1012
                dtype=batch_ref.dtype,
1013
                persistable=False)
Y
Yu Yang 已提交
1014 1015

            parent_block.append_op(
1016 1017
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1018 1019 1020
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1021
                    'shape': boot_var.shape,
F
fengjiayi 已提交
1022
                    'dtype': boot_var.dtype,
1023 1024
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1025 1026 1027 1028 1029 1030
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
1031
                dtype=init.dtype,
Y
Yu Yang 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1042 1043
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1044 1045 1046
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
1047
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
1056
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
1057 1058 1059 1060
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
1061
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
1062

Y
Yu Yang 已提交
1063
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1064 1065
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
1066
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1080
        prog = self.helper.main_program
Y
Yu Yang 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1097 1098
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
1138
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
1139 1140 1141 1142 1143

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
1144
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1162 1163


Y
Yang Yang(Tony) 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
1194
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1240 1241 1242 1243 1244 1245
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1246 1247 1248 1249
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

F
fengjiayi 已提交
1266 1267 1268
        dtype = x.dtype
        c = helper.create_tmp_variable(dtype)
        h = helper.create_tmp_variable(dtype)
Y
Yang Yang(Tony) 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1284
def lod_rank_table(x, level=0, main_program=None):
1285 1286 1287 1288
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1299 1300


F
fengjiayi 已提交
1301 1302
def max_sequence_len(rank_table, main_program=None):
    """
Y
Yu Yang 已提交
1303
    This function creates an operator to calculate the length of
F
fengjiayi 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
    max seqence through input rank_table(should be a lod_rank_table)
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


Y
Yu Yang 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
def topk(input, k, main_program=None, startup_program=None):
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


1328
def lod_tensor_to_array(x, table, main_program=None):
1329 1330 1331 1332
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1333 1334 1335
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1336
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1337
        dtype=x.dtype)
1338 1339 1340 1341 1342 1343 1344 1345 1346
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1347 1348 1349 1350
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1351
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
1352
    tmp = helper.create_tmp_variable(dtype=x.dtype)
1353 1354 1355 1356 1357 1358 1359 1360
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1361 1362 1363 1364 1365 1366
def fill_constant(shape,
                  dtype,
                  value,
                  out=None,
                  main_program=None,
                  startup_program=None):
1367 1368
    """
    This function creates a tensor , with shape as mentioned in the input and
F
fengjiayi 已提交
1369
    specified dtype and fills this up with a constant value that
1370 1371
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1372
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1373 1374
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
1375 1376 1377 1378
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
F
fengjiayi 已提交
1379 1380 1381
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
Y
Yu Yang 已提交
1382 1383 1384 1385
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
                                  output_dim_idx=0,
                                  main_program=None,
                                  startup_program=None):
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
F
fengjiayi 已提交
1402
            'dtype': out.dtype,
Y
Yu Yang 已提交
1403 1404 1405 1406 1407 1408 1409 1410
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1411
def ones(shape, dtype, main_program=None):
1412 1413 1414 1415
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1416 1417 1418 1419
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1420 1421 1422 1423
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1424 1425 1426
    return fill_constant(value=0.0, **locals())


1427
def increment(x, value=1.0, in_place=True, main_program=None):
1428 1429 1430 1431 1432
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1433
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1434
    if not in_place:
F
fengjiayi 已提交
1435
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1436 1437
    else:
        out = x
Y
Yu Yang 已提交
1438 1439 1440
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1441
        outputs={'Out': [out]},
1442
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1443
    return out
Y
Yu Yang 已提交
1444 1445 1446


def array_write(x, i, array=None, main_program=None):
1447 1448 1449 1450
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1451 1452 1453 1454 1455
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1456
            dtype=x.dtype)
Y
Yu Yang 已提交
1457 1458 1459 1460 1461 1462 1463 1464
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1465 1466 1467 1468 1469 1470 1471 1472
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
Yu Yang 已提交
1473
def less_than(x, y, cond=None, main_program=None, **ignored):
Y
Yang Yang(Tony) 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1485
def array_read(array, i, main_program=None):
1486 1487 1488 1489
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1490 1491 1492 1493 1494
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1495
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1496 1497 1498 1499 1500 1501
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1502 1503 1504


def shrink_memory(x, i, table, main_program=None):
1505 1506 1507 1508
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1509
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1510
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1511
    helper.append_op(
Y
Yang Yu 已提交
1512
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1513 1514 1515 1516 1517 1518
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1519 1520 1521


def array_length(array, main_program=None):
1522 1523 1524 1525
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1526 1527 1528 1529 1530 1531
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1532 1533


1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    """
    The transpose of conv2d layer.
Y
Yu Yang 已提交
1545

1546
    This layer is also known as deconvolution layer.
Y
Yu Yang 已提交
1547

1548 1549 1550 1551 1552
    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
Y
Yu Yang 已提交
1553
            tuple, it must contain two integers, (image_H, image_W). This
1554 1555 1556 1557 1558 1559
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
Y
Yu Yang 已提交
1560
            contain two integers, (padding_H, padding_W). Otherwise, the
1561 1562 1563 1564 1565 1566
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
        param_attr: Parameter Attribute.
        main_program(Program): the main program
Y
Yu Yang 已提交
1567
        startup_program(Program): the startup program
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
        op_attr['strides'] = stride
    elif stride is not None:
        op_attr['strides'] = stride

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])

        h_in = input.shape[2]
        w_in = input.shape[3]
        filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0]
        filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1]
        filter_size = [filter_size_h, filter_size_w]
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
Y
Yu Yang 已提交
1608
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
1609 1610 1611 1612 1613 1614 1615 1616

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)
Y
Yu Yang 已提交
1617

1618 1619 1620
    return out


Y
Yu Yang 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yu Yang 已提交
1638 1639 1640 1641 1642
    def __init__(self,
                 inputs,
                 name=None,
                 main_program=None,
                 startup_program=None):
Y
Yu Yang 已提交
1643 1644 1645 1646 1647
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
Y
Yu Yang 已提交
1648 1649 1650 1651
            'conditional_block',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
Y
Yu Yang 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})
Y
Yu Yang 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

    def __init__(self, cond, name=None, main_program=None,
                 startup_program=None):
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
        self.helper = LayerHelper(
            'ifelse',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1759
                dtype=x.dtype)
Y
Yu Yang 已提交
1760 1761 1762

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1763
                dtype=x.dtype)
Y
Yu Yang 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
1805
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
            out_table.append(outside_out)

            # assign local var to outside
            assign(
                input=each_out,
                output=outside_out,
                main_program=self.helper.main_program,
                startup_program=self.helper.startup_program)

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                    main_program=self.helper.main_program,
                    startup_program=self.helper.startup_program))
        return rlist