layers.py 59.6 KB
Newer Older
Y
Yu Yang 已提交
1
import core
2 3
import proto.framework_pb2 as framework_pb2
from framework import OpProtoHolder, Variable, Program, Operator
4
from initializer import Constant, Normal, Xavier, Initializer
Q
Qiao Longfei 已提交
5
from paddle.v2.fluid.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
6
import re
7
import cStringIO
Y
Yu Yang 已提交
8
from param_attr import ParamAttr
Y
Yu Yang 已提交
9

Q
QI JUN 已提交
10
__all__ = [
Y
Yu Yang 已提交
11
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
12
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
13
    'batch_norm', 'accuracy', 'split_lod_tensor'
Q
QI JUN 已提交
14
]
Y
Yu Yang 已提交
15 16


F
fengjiayi 已提交
17 18
def fc(input,
       size,
C
chengduoZH 已提交
19
       num_flatten_dims=1,
F
fengjiayi 已提交
20
       param_attr=None,
Q
QI JUN 已提交
21
       bias_attr=None,
F
fengjiayi 已提交
22
       act=None,
C
chengduoZH 已提交
23
       name=None,
24 25
       main_program=None,
       startup_program=None):
26 27 28 29 30 31
    """
    Fully Connected Layer.

    Args:
       input: The input tensor to the function
       size: The size of the layer
C
chengduoZH 已提交
32
       num_flatten_dims: Number of columns in input
33
       param_attr: The parameters/weights to the FC Layer
34 35
       param_initializer: Initializer used for the weight/parameter.
       If None, XavierInitializer() is used
36
       bias_attr: The bias parameter for the FC layer
37 38
       bias_initializer: Initializer used for the bias.
       If None, then ConstantInitializer() is used
39
       act: Activation to be applied to the output of FC layer
C
chengduoZH 已提交
40
       name: Name/alias of the function
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in multiple inputs and performs the Fully Connected
    function (linear transformation) on top of each of them.
    So for input x, the output will be : Wx + b. Where W is the parameter,
    b the bias and x is the input.

    The function also applies an activation (non-linearity) on top of the
    output, if activation is passed in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
56 57 58 59 60 61 62
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
63 64 65
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
66
        w = helper.create_parameter(
Y
Yu Yang 已提交
67
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
76 77
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
78 79 80 81 82 83 84 85 86 87
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
Y
Yu Yang 已提交
88
    pre_activation = helper.append_bias_op(pre_bias)
Y
Yu Yang 已提交
89 90 91 92
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
93 94
def embedding(input,
              size,
95
              is_sparse=False,
Q
QI JUN 已提交
96
              param_attr=None,
F
fengjiayi 已提交
97
              dtype='float32',
98 99
              main_program=None,
              startup_program=None):
100 101 102 103
    """
    Embedding Layer.

    Args:
Y
Yu Yang 已提交
104
       param_initializer:
105 106 107 108
       input: The input to the function
       size: The size of the layer
       is_sparse: A flag that decleares whether the input is sparse
       param_attr: Parameters for this layer
F
fengjiayi 已提交
109
       dtype: The type of data : float32, float_16, int etc
110 111 112 113 114 115 116 117 118 119 120
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program

    This function can take in the input (which is a vector of IDs) and
    performs a lookup in the lookup_table using these IDs, to result into
    the embedding of each ID in the input.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Q
Qiao Longfei 已提交
121

Q
QI JUN 已提交
122 123
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
Y
Yu Yang 已提交
124
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
F
fengjiayi 已提交
125
    tmp = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
126 127 128 129
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
130 131
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
132 133 134
    return tmp


Q
QI JUN 已提交
135 136 137 138 139 140 141 142 143 144
# TODO(qijun): expose H0 and C0
def dynamic_lstm(input,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
F
fengjiayi 已提交
145
                 dtype='float32',
Q
QI JUN 已提交
146 147 148 149 150
                 main_program=None,
                 startup_program=None):
    helper = LayerHelper('lstm', **locals())
    size = size / 4
    weight = helper.create_parameter(
F
fengjiayi 已提交
151
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
Q
QI JUN 已提交
152 153 154 155
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
Y
Yu Yang 已提交
156
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Q
QI JUN 已提交
157

F
fengjiayi 已提交
158 159 160 161
    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Q
QI JUN 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

    helper.append_op(
        type='lstm',
        inputs={'Input': input,
                'Weight': weight,
                'Bias': bias},
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


F
fengjiayi 已提交
184 185
def data(name,
         shape,
C
chengduoZH 已提交
186
         append_batch_size=True,
F
fengjiayi 已提交
187
         dtype='float32',
Y
Yu Yang 已提交
188
         lod_level=0,
F
fengjiayi 已提交
189
         type=core.VarDesc.VarType.LOD_TENSOR,
190
         main_program=None,
191 192
         startup_program=None,
         stop_gradient=True):
193 194 195 196 197 198
    """
    Data Layer.

    Args:
       name: The name/alias of the function
       shape: Tuple declaring the shape.
C
chengduoZH 已提交
199
       append_batch_size: Whether or not to append the data as a batch.
F
fengjiayi 已提交
200
       dtype: The type of data : float32, float_16, int etc
201
       type: The output type. By default it is LOD_TENSOR.
Y
Yu Yang 已提交
202
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
203 204 205 206 207 208 209 210 211 212 213 214 215
       main_program: Name of the main program that calls this
       startup_program: Name of the startup program
       stop_gradient: A boolean that mentions whether gradient should flow.

    This function takes in input and based on whether data has
    to be returned back as a minibatch, it creates the global variable using
    the helper functions. The global variables can be accessed by all the
    following operations and layers in the graph.

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

    """
Y
Yu Yang 已提交
216
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
217 218 219 220 221 222 223 224
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
225 226
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
227

Y
Yu Yang 已提交
228
    return helper.create_global_variable(
229 230
        name=name,
        shape=shape,
F
fengjiayi 已提交
231
        dtype=dtype,
232
        type=type,
Y
Yu Yang 已提交
233 234
        stop_gradient=stop_gradient,
        lod_level=lod_level)
Y
Yu Yang 已提交
235 236


Y
Yu Yang 已提交
237
def create_tensor(dtype, name=None, main_program=None, startup_program=None):
Y
Yu Yang 已提交
238 239
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)
Y
Yu Yang 已提交
240 241 242


def _convert_(name):
243 244 245 246 247 248 249 250 251 252 253
    """
    Formatting.

    Args:
       name: The name/alias

    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.

    """
Y
Yu Yang 已提交
254 255 256 257
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


258 259 260
def _generate_doc_string_(op_proto):
    """
    Generate docstring by OpProto
X
xuwei06 已提交
261

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto

    Returns:
        str: the document string
    """

    def _type_to_str_(tp):
        return framework_pb2.AttrType.Name(tp)

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

    buf = cStringIO.StringIO()
    buf.write(op_proto.comment)
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
        line_begin = '    {0}: '.format(_convert_(each_input.name))
        buf.write(line_begin)
        buf.write(each_input.comment)
        buf.write('\n')
        buf.write(' ' * len(line_begin))
        buf.write('Duplicable: ')
        buf.write(str(each_input.duplicable))
        buf.write('  Optional: ')
        buf.write(str(each_input.dispensable))
        buf.write('\n')

    for each_attr in op_proto.attrs:
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
        buf.write(each_attr.comment)
        buf.write('\n')

    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
        buf.write(each_opt.comment)

    return buf.getvalue()


Y
Yu Yang 已提交
310
def _create_op_func_(op_type):
311 312 313 314 315 316 317 318 319 320
    """
    Create an Operator for a Function.

    Args:
       op_type: The name of the operator to be created

    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.

    """
Y
Yu Yang 已提交
321
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
322 323 324 325 326 327
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
328 329
        raise ValueError("Only one non intermediate output operator can be",
                         "automatically generated")
Y
Yu Yang 已提交
330

331
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
332
        raise ValueError(
333
            "Only non duplicable op can be automatically generated")
Y
Yu Yang 已提交
334

335 336
    for output in intermediate_outputs:
        if output.duplicable:
337 338
            raise ValueError("The op can be automatically generated only when ",
                             "all intermediate ops are not duplicable")
339 340 341

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
342

F
fengjiayi 已提交
343
    def infer_and_check_dtype(op_proto, **kwargs):
344
        """
F
fengjiayi 已提交
345
        This function performs the sanity check for dtype and
346 347
        instance type.
        """
Y
Yu Yang 已提交
348 349 350 351 352 353 354 355 356 357 358 359
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
F
fengjiayi 已提交
360 361
                    dtype = each.dtype
                elif dtype != each.dtype:
Y
Yu Yang 已提交
362 363
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
Y
Yang Yang(Tony) 已提交
364 365 366 367 368 369

        return dtype

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)

F
fengjiayi 已提交
370
        dtype = infer_and_check_dtype(op_proto, **kwargs)
Y
Yang Yang(Tony) 已提交
371 372 373 374 375 376 377

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
378 379
            inputs[ipt.name] = val

380
        outputs = dict()
Y
Yu Yang 已提交
381
        out = helper.create_tmp_variable(dtype=dtype)
382 383 384
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
385
        helper.append_op(
386
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
387
        return helper.append_activation(out)
Y
Yu Yang 已提交
388 389 390

    func.__name__ = op_type
    globals()[op_type] = func
391
    func.__doc__ = _generate_doc_string_(op_proto)
Y
Yu Yang 已提交
392 393 394 395 396
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
397
_create_op_func_('mul')
Q
Qiao Longfei 已提交
398
_create_op_func_('elementwise_add')
Y
Yu Yang 已提交
399
_create_op_func_('elementwise_div')
400
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
401
_create_op_func_('reshape')
Y
Yu Yang 已提交
402 403
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yang Yang(Tony) 已提交
404 405
_create_op_func_('reshape')
_create_op_func_('transpose')
406
_create_op_func_('sigmoid_cross_entropy_with_logits')
Y
Yang Yang(Tony) 已提交
407 408


F
fengjiayi 已提交
409
def cast(x, dtype, main_program=None):
410
    """
F
fengjiayi 已提交
411 412
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
413
    """
Y
Yu Yang 已提交
414
    helper = LayerHelper('cast', **locals())
F
fengjiayi 已提交
415
    out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
416 417 418 419
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
F
fengjiayi 已提交
420 421
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
Y
Yu Yang 已提交
422 423 424
    return out


425
def concat(input, axis, main_program=None, startup_program=None):
426 427 428 429
    """
    This function concats the input along the axis mentioned
    and returns that as the output.
    """
Q
QI JUN 已提交
430
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
431
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
432 433 434 435 436 437 438 439
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


Y
Yu Yang 已提交
440
def sums(input, out=None, main_program=None, startup_program=None):
441 442 443 444
    """
    This function takes in the input and performs the sum operation on it
    and returns that as the output.
    """
D
dzhwinter 已提交
445
    helper = LayerHelper('sum', **locals())
Y
Yu Yang 已提交
446 447
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
448
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
449 450 451
    return out


Q
Qiao Longfei 已提交
452 453 454 455 456 457 458 459 460 461
def linear_chain_crf(input,
                     label,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
Y
Yu Yang 已提交
462
        dtype=helper.input_dtype())
Q
Qiao Longfei 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
Yu Yang 已提交
482
def assign(input, output, main_program=None, startup_program=None):
Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


492 493
def split_lod_tensor(input,
                     mask,
Y
Yu Yang 已提交
494
                     level=0,
495 496 497
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
498 499
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


def merge_lod_tensor(in_true,
                     in_false,
                     x,
                     mask,
Y
Yu Yang 已提交
516
                     level=0,
517 518 519
                     main_program=None,
                     startup_program=None):
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
520
    out = helper.create_tmp_variable(dtype=in_true.dtype)
521 522 523 524 525 526 527 528 529 530 531
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


532
def cos_sim(X, Y, **kwargs):
533 534 535 536
    """
    This function performs the cosine similarity between two tensors
    X and Y and returns that as the output.
    """
537
    helper = LayerHelper('cos_sim', **kwargs)
F
fengjiayi 已提交
538 539 540
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
D
dzhwinter 已提交
541 542 543 544 545 546 547
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
548
    return out
D
dzhwinter 已提交
549 550


Y
Yu Yang 已提交
551
def cross_entropy(input, label, **kwargs):
552 553 554
    """
    This function computes cross_entropy using the input and label.
    """
Y
Yu Yang 已提交
555
    helper = LayerHelper('cross_entropy', **kwargs)
F
fengjiayi 已提交
556
    out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
557 558 559 560 561 562 563 564 565 566
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
567 568 569 570
    """
    This functions returns the squared error cost using the input and label.
    The output is appending the op to do the above.
    """
Y
Yu Yang 已提交
571
    helper = LayerHelper('square_error_cost', **kwargs)
F
fengjiayi 已提交
572
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
573 574 575 576 577 578
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

F
fengjiayi 已提交
579
    square_out = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
580
    helper.append_op(
Q
QI JUN 已提交
581
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
582
    return square_out
583 584


Y
Yu Yang 已提交
585
def accuracy(input, label, k=1, correct=None, total=None, **kwargs):
586 587 588 589
    """
    This function computes the accuracy using the input and label.
    The output is the top_k inputs and their indices.
    """
F
fengjiayi 已提交
590
    helper = LayerHelper("accuracy", **kwargs)
F
fengjiayi 已提交
591
    topk_out = helper.create_tmp_variable(dtype=input.dtype)
F
fengjiayi 已提交
592 593 594 595 596 597 598
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
D
Dong Zhihong 已提交
599
    acc_out = helper.create_tmp_variable(dtype="float32")
Y
Yu Yang 已提交
600 601 602 603
    if correct is None:
        correct = helper.create_tmp_variable(dtype="int64")
    if total is None:
        total = helper.create_tmp_variable(dtype="int64")
F
fengjiayi 已提交
604 605
    helper.append_op(
        type="accuracy",
武毅 已提交
606 607 608 609 610
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
D
Dong Zhihong 已提交
611 612 613 614 615
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        })
F
fengjiayi 已提交
616 617 618
    return acc_out


D
dzhwinter 已提交
619 620 621
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
622
                  filter_stride=1,
D
dzhwinter 已提交
623 624 625
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduoZH 已提交
626
                  act=None,
627 628
                  main_program=None,
                  startup_program=None):
629 630 631 632 633
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
    """
634

D
dzhwinter 已提交
635 636 637 638 639 640
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
D
dzhwinter 已提交
641
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
642
    filter = helper.create_parameter(
Y
Yu Yang 已提交
643
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
D
dzhwinter 已提交
644 645 646 647 648 649
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
650
            'Filter': [filter],
D
dzhwinter 已提交
651 652 653
        },
        outputs={"Out": pre_bias},
        attrs={
654
            'contextStride': filter_stride,
655
            'contextStart': -int(filter_size / 2),
656
            'contextLength': filter_size
D
dzhwinter 已提交
657
        })
Y
Yu Yang 已提交
658
    pre_act = helper.append_bias_op(pre_bias)
D
dzhwinter 已提交
659 660 661
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
662 663
def conv2d(input,
           num_filters,
C
chengduoZH 已提交
664
           filter_size,
F
fengjiayi 已提交
665 666
           stride=[1, 1],
           padding=None,
C
chengduoZH 已提交
667
           groups=None,
F
fengjiayi 已提交
668
           param_attr=None,
C
chengduoZH 已提交
669 670 671
           bias_attr=None,
           act=None,
           name=None,
672 673
           main_program=None,
           startup_program=None):
674 675 676 677 678 679 680
    """
    This function creates the op for a 2-dimensional Convolution.
    This is performed using the parameters of filters(size, dimensionality etc)
    , stride and other configurations for a Convolution operation.
    This funciton can also append an activation on top of the
    conv-2d output, if mentioned in the input parameters.
    """
681

682 683 684 685 686 687 688
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
C
chengduoZH 已提交
689
        if num_channels % groups != 0:
690 691 692
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
693 694 695 696 697 698 699
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

700 701
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
702

Y
Yu Yang 已提交
703 704 705
    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)
706

707
    filter = helper.create_parameter(
708 709 710
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
Y
Yu Yang 已提交
711 712
        default_initializer=_get_default_param_initializer())

713 714 715 716 717 718 719 720 721 722 723 724 725
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
726
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
727 728

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
729 730


D
dzhwinter 已提交
731
def sequence_pool(input, pool_type, **kwargs):
732 733 734 735 736
    """
    This function add the operator for sequence pooling.
    This is applied on top of the input using pool_type mentioned
    in the parameters.
    """
737
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
738 739
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
D
dangqingqing 已提交
740
    max_index = helper.create_tmp_variable(dtype)
D
dzhwinter 已提交
741 742 743

    helper.append_op(
        type="sequence_pool",
D
dangqingqing 已提交
744 745 746
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
D
dzhwinter 已提交
747
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
748 749 750 751

    return pool_out


F
fengjiayi 已提交
752 753 754 755 756 757
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
758 759
           main_program=None,
           startup_program=None):
760 761 762 763
    """
    This function adds the operator for pooling in 2 dimensions, using the
    pooling configurations mentioned in input parameters.
    """
F
fengjiayi 已提交
764 765 766 767 768 769 770 771 772 773 774
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
775
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
776 777 778 779 780 781 782 783
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
784
            "pooling_type": pool_type,
F
fengjiayi 已提交
785
            "ksize": pool_size,
C
chengduoZH 已提交
786
            "global_pooling": global_pooling,
F
fengjiayi 已提交
787 788 789 790 791
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
792 793


Q
Qiao Longfei 已提交
794 795 796 797
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
798
               epsilon=1e-05,
Q
Qiao Longfei 已提交
799 800 801
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
802 803
               main_program=None,
               startup_program=None):
804 805 806 807
    """
    This function helps create an operator to implement
    the BatchNorm layer using the configurations from the input parameters.
    """
Q
Qiao Longfei 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
824 825 826
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
Y
Yu Yang 已提交
827 828
        default_initializer=Constant(1.0))

Q
Qiao Longfei 已提交
829
    bias = helper.create_parameter(
Y
Yu Yang 已提交
830
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True)
831 832

    mean = helper.create_global_variable(
F
fengjiayi 已提交
833
        dtype=input.dtype, shape=param_shape, persistable=True)
834
    helper.set_variable_initializer(var=mean, initializer=Constant(0.0))
835 836

    variance = helper.create_global_variable(
F
fengjiayi 已提交
837
        dtype=input.dtype, shape=param_shape, persistable=True)
838
    helper.set_variable_initializer(var=variance, initializer=Constant(1.0))
Q
Qiao Longfei 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


873 874
def beam_search_decode(ids, scores, main_program=None, startup_program=None):
    helper = LayerHelper('beam_search_decode', **locals())
F
fengjiayi 已提交
875 876
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)
877 878 879 880 881 882 883 884 885 886 887 888 889

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        })

    return sentence_ids, sentence_scores


Y
Yu Yang 已提交
890 891
class BlockGuard(object):
    """
892 893 894 895
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
896 897
    """

898 899
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
900
            raise TypeError("BlockGuard takes a program")
901
        self.main_program = main_program
Y
Yu Yang 已提交
902 903

    def __enter__(self):
904
        self.main_program.create_block()
Y
Yu Yang 已提交
905 906

    def __exit__(self, exc_type, exc_val, exc_tb):
907
        self.main_program.rollback()
Y
Yu Yang 已提交
908 909 910 911 912 913
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
914 915 916 917 918 919
    """
    StaticRNNGuard class.

    StaticRNNGuard class is used to create a StaticRNN block in a program.
    """

Y
Yu Yang 已提交
920 921
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
Y
Yang Yang(Tony) 已提交
922
            raise TypeError("StaticRNNGuard takes a StaticRNN")
923
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
924 925 926 927 928 929 930
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
931 932
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
933 934 935 936 937 938 939
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
940 941 942 943 944 945 946 947 948 949 950 951
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
952 953 954 955 956 957 958 959 960
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
961 962 963 964 965 966
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
967 968 969 970
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

971 972 973
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

988 989 990 991 992 993 994
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
995 996 997 998 999 1000 1001 1002 1003
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
1004 1005
        self._assert_in_rnn_block_('memory')
        if init is None:
1006
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
1007
                raise ValueError(
1008
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
1009 1010 1011
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
1012 1013
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
1014
                dtype=batch_ref.dtype,
1015
                persistable=False)
Y
Yu Yang 已提交
1016 1017

            parent_block.append_op(
1018 1019
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
1020 1021 1022
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
1023
                    'shape': boot_var.shape,
F
fengjiayi 已提交
1024
                    'dtype': boot_var.dtype,
1025 1026
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
1027 1028 1029 1030 1031 1032
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
1033
                dtype=init.dtype,
Y
Yu Yang 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
1044 1045
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
1046 1047 1048
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
1049
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
1050 1051 1052 1053 1054 1055 1056 1057
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
1058
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
1059 1060 1061 1062
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
1063
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
1064

Y
Yu Yang 已提交
1065
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
1066 1067
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
1068
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
1082
        prog = self.helper.main_program
Y
Yu Yang 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
1099 1100
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
1140
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
1141 1142 1143 1144 1145

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
1146
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
1164 1165


Y
Yang Yang(Tony) 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

    def __init__(self, cond, name=None, main_program=None):
        self.helper = LayerHelper("while", name=name, main_program=main_program)
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
F
fengjiayi 已提交
1196
        if cond.dtype != core.DataType.BOOL:
Y
Yang Yang(Tony) 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
                'X': [parent_block.var(x_name) for x_name in x_name_list],
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
            attrs={'step_block': while_block})


Y
Yang Yang(Tony) 已提交
1242 1243 1244 1245 1246 1247
def lstm(x,
         c_pre_init,
         hidden_dim,
         forget_bias=None,
         main_program=None,
         startup_program=None):
1248 1249 1250 1251
    """
    This function helps create an operator for the LSTM (Long Short Term
    Memory) cell that can be used inside an RNN.
    """
Y
Yang Yang(Tony) 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
    helper = LayerHelper('lstm_unit', **locals())
    rnn = StaticRNN()
    with rnn.step():
        c_pre = rnn.memory(init=c_pre_init)
        x_t = rnn.step_input(x)

        before_fc = concat(
            input=[x_t, c_pre],
            axis=1,
            main_program=main_program,
            startup_program=startup_program)
        after_fc = fc(input=before_fc,
                      size=hidden_dim * 4,
                      main_program=main_program,
                      startup_program=startup_program)

F
fengjiayi 已提交
1268 1269 1270
        dtype = x.dtype
        c = helper.create_tmp_variable(dtype)
        h = helper.create_tmp_variable(dtype)
Y
Yang Yang(Tony) 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

        helper.append_op(
            type='lstm_unit',
            inputs={"X": after_fc,
                    "C_prev": c_pre},
            outputs={"C": c,
                     "H": h},
            attrs={"forget_bias": forget_bias})

        rnn.update_memory(c_pre, c)
        rnn.output(h)

    return rnn()


1286
def lod_rank_table(x, level=0, main_program=None):
1287 1288 1289 1290
    """
    This function creates an operator for creating a LOD_RANK_TABLE
    using the input x.
    """
Y
Yu Yang 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1301 1302


F
fengjiayi 已提交
1303 1304
def max_sequence_len(rank_table, main_program=None):
    """
Y
Yu Yang 已提交
1305
    This function creates an operator to calculate the length of
F
fengjiayi 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    max seqence through input rank_table(should be a lod_rank_table)
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


Y
Yu Yang 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
def topk(input, k, main_program=None, startup_program=None):
    helper = LayerHelper('topk', **locals())
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype='int64')
    helper.append_op(
        type='top_k',
        inputs={'X': [input]},
        outputs={'Out': [topk_out],
                 'Indices': [topk_indices]},
        attrs={'k': k})
    return topk_out, topk_indices


1330
def lod_tensor_to_array(x, table, main_program=None):
1331 1332 1333 1334
    """
    This function creates an operator to convert an LOD_Tensor to
    an array.
    """
1335 1336 1337
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
        name=unique_name("lod_tensor_to_array"),
1338
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1339
        dtype=x.dtype)
1340 1341 1342 1343 1344 1345 1346 1347 1348
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


def array_to_lod_tensor(x, table, main_program=None):
1349 1350 1351 1352
    """
    This function creates an operator to convert an array to a
    LOD_Tensor.
    """
1353
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
1354
    tmp = helper.create_tmp_variable(dtype=x.dtype)
1355 1356 1357 1358 1359 1360 1361 1362
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


Y
Yu Yang 已提交
1363 1364 1365 1366 1367 1368
def fill_constant(shape,
                  dtype,
                  value,
                  out=None,
                  main_program=None,
                  startup_program=None):
1369 1370
    """
    This function creates a tensor , with shape as mentioned in the input and
F
fengjiayi 已提交
1371
    specified dtype and fills this up with a constant value that
1372 1373
    comes in the input. It also sets the stop_gradient to be True.
    """
Y
Yang Yu 已提交
1374
    helper = LayerHelper("fill_constant", **locals())
Y
Yu Yang 已提交
1375 1376
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
Y
Yu Yang 已提交
1377 1378 1379 1380
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
F
fengjiayi 已提交
1381 1382 1383
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
Y
Yu Yang 已提交
1384 1385 1386 1387
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
                                  output_dim_idx=0,
                                  main_program=None,
                                  startup_program=None):
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
F
fengjiayi 已提交
1404
            'dtype': out.dtype,
Y
Yu Yang 已提交
1405 1406 1407 1408 1409 1410 1411 1412
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


Y
Yu Yang 已提交
1413
def ones(shape, dtype, main_program=None):
1414 1415 1416 1417
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 1.0.
    """
Y
Yu Yang 已提交
1418 1419 1420 1421
    return fill_constant(value=1.0, **locals())


def zeros(shape, dtype, main_program=None):
1422 1423 1424 1425
    """
    This function performs the same function as fill_constant() declared above
    with the constant value being 0.0.
    """
Y
Yu Yang 已提交
1426 1427 1428
    return fill_constant(value=0.0, **locals())


1429
def increment(x, value=1.0, in_place=True, main_program=None):
1430 1431 1432 1433 1434
    """
    This function creates an operator to increment each value in the input
    `x` by an amount: `value` as mentioned in the input parameter. This
    operation is performed in-place by default.
    """
Y
Yu Yang 已提交
1435
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1436
    if not in_place:
F
fengjiayi 已提交
1437
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1438 1439
    else:
        out = x
Y
Yu Yang 已提交
1440 1441 1442
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1443
        outputs={'Out': [out]},
Y
Yu Yang 已提交
1444
        attrs={'step': value})
Y
Yang Yu 已提交
1445
    return out
Y
Yu Yang 已提交
1446 1447 1448


def array_write(x, i, array=None, main_program=None):
1449 1450 1451 1452
    """
    This function creates an operator to write the data out as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1453 1454 1455 1456 1457
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1458
            dtype=x.dtype)
Y
Yu Yang 已提交
1459 1460 1461 1462 1463 1464 1465 1466
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


Y
Yang Yang(Tony) 已提交
1467 1468 1469 1470 1471 1472 1473 1474
def create_array(dtype, main_program=None):
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
Yu Yang 已提交
1475
def less_than(x, y, cond=None, main_program=None, **ignored):
Y
Yang Yang(Tony) 已提交
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='less_than', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


Y
Yu Yang 已提交
1487
def array_read(array, i, main_program=None):
1488 1489 1490 1491
    """
    This function creates an operator to read the data in as a
    LOD_TENSOR_ARRAY.
    """
Y
Yu Yang 已提交
1492 1493 1494 1495 1496
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1497
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1498 1499 1500 1501 1502 1503
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1504 1505 1506


def shrink_memory(x, i, table, main_program=None):
1507 1508 1509 1510
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1511
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1512
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1513
    helper.append_op(
Y
Yang Yu 已提交
1514
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1515 1516 1517 1518 1519 1520
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1521 1522 1523


def array_length(array, main_program=None):
1524 1525 1526 1527
    """
    This function creates an operator to find the length of the
    LOD_TENSOR_ARRAY.
    """
Y
Yang Yu 已提交
1528 1529 1530 1531 1532 1533
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1534 1535


1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
                     padding=None,
                     stride=None,
                     param_attr=None,
                     main_program=None,
                     startup_program=None):
    """
    The transpose of conv2d layer.
Y
Yu Yang 已提交
1547

1548
    This layer is also known as deconvolution layer.
Y
Yu Yang 已提交
1549

1550 1551 1552 1553 1554
    Args:
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
Y
Yu Yang 已提交
1555
            tuple, it must contain two integers, (image_H, image_W). This
1556 1557 1558 1559 1560 1561
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.  None if use output size to
            calculate filter_size
        padding(int|tuple): The padding size. If padding is a tuple, it must
Y
Yu Yang 已提交
1562
            contain two integers, (padding_H, padding_W). Otherwise, the
1563 1564 1565 1566 1567 1568
            padding_H = padding_W = padding.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride.
        param_attr: Parameter Attribute.
        main_program(Program): the main program
Y
Yu Yang 已提交
1569
        startup_program(Program): the startup program
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

    Returns:
        Variable: Output image.
    """
    helper = LayerHelper("conv2d_transpose", **locals())
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")
    input_channel = input.shape[1]

    op_attr = dict()

    if isinstance(padding, int):
        op_attr['paddings'] = [padding, padding]
    elif padding is not None:
        op_attr['paddings'] = padding

    if isinstance(stride, int):
        op_attr['strides'] = stride
    elif stride is not None:
        op_attr['strides'] = stride

    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

        padding = op_attr.get('paddings', [0, 0])
        stride = op_attr.get('strides', [1, 1])

        h_in = input.shape[2]
        w_in = input.shape[3]
        filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0]
        filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1]
        filter_size = [filter_size_h, filter_size_w]
    elif isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]

    filter_shape = [input_channel, num_filters] + filter_size
    img_filter = helper.create_parameter(
Y
Yu Yang 已提交
1610
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
1611 1612 1613 1614 1615 1616 1617 1618

    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='conv2d_transpose',
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': out},
        attrs=op_attr)
Y
Yu Yang 已提交
1619

1620 1621 1622
    return out


Y
Yu Yang 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yu Yang 已提交
1640 1641 1642 1643 1644
    def __init__(self,
                 inputs,
                 name=None,
                 main_program=None,
                 startup_program=None):
Y
Yu Yang 已提交
1645 1646 1647 1648 1649
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
        self.helper = LayerHelper(
Y
Yu Yang 已提交
1650 1651 1652 1653
            'conditional_block',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
Y
Yu Yang 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
            parent_block.var(each_name) for each_name in params
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
            if var_name not in intermediate
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
            attrs={'block': inside_block})
Y
Yu Yang 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

    def __init__(self, cond, name=None, main_program=None,
                 startup_program=None):
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
        self.helper = LayerHelper(
            'ifelse',
            name=name,
            main_program=main_program,
            startup_program=startup_program)
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1761
                dtype=x.dtype)
Y
Yu Yang 已提交
1762 1763 1764

            out_false = parent_block.create_var(
                name=unique_name('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1765
                dtype=x.dtype)
Y
Yu Yang 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
                name=unique_name("_".join([self.helper.name, 'output'])),
F
fengjiayi 已提交
1807
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
            out_table.append(outside_out)

            # assign local var to outside
            assign(
                input=each_out,
                output=outside_out,
                main_program=self.helper.main_program,
                startup_program=self.helper.startup_program)

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                    main_program=self.helper.main_program,
                    startup_program=self.helper.startup_program))
        return rlist