mul_op.cc 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of MulOp should not be null.");
Q
Qiao Longfei 已提交
41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
44

Q
Qiao Longfei 已提交
45 46
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
47

M
minqiyang 已提交
48 49 50
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
51

52 53 54 55 56 57
    PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
                      "Maybe the Input variable Y(%s) has not "
                      "been initialized. You may need to confirm "
                      "if you put exe.run(startup_program) "
                      "after optimizer.minimize function.",
                      ctx->Inputs("Y").front());
58 59 60 61 62 63 64 65 66 67
    PADDLE_ENFORCE_GT(x_dims.size(), x_num_col_dims,
                      "ShapeError: The input tensor X's dimensions of MulOp "
                      "should be larger than x_num_col_dims. But received X's "
                      "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
                      x_dims.size(), x_dims, x_num_col_dims);
    PADDLE_ENFORCE_GT(y_dims.size(), y_num_col_dims,
                      "ShapeError: The input tensor Y's dimensions of MulOp "
                      "should be larger than y_num_col_dims. But received Y's "
                      "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
                      y_dims.size(), y_dims, y_num_col_dims);
68

F
fengjiayi 已提交
69 70
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
71

72 73 74 75 76 77 78
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
        "ShapeError: After flatten the input tensor X and Y to 2-D dimensions "
        "matrix X1 and Y1, the matrix X1's width must be equal with matrix "
        "Y1's height. But received X's shape = [%s], X1's shape = [%s], X1's "
        "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = %s.",
        x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, y_mat_dims[0]);
Y
Yu Yang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
92
    ctx->ShareLoD("X", /*->*/ "Out");
93
  }
P
Physher 已提交
94 95 96 97 98 99 100

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
101
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
102 103 104 105 106 107
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

108 109
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
110 111 112 113 114 115 116 117
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
118 119
};

D
dongzhihong 已提交
120
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
121
 public:
Y
Yu Yang 已提交
122
  void Make() override {
C
caoying03 已提交
123 124 125
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
126 127 128
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
129
    AddAttr<int>(
F
fengjiayi 已提交
130
        "x_num_col_dims",
C
caoying03 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
146
        )DOC")
F
WIP  
fengjiayi 已提交
147
        .SetDefault(1)
F
fengjiayi 已提交
148
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
149
    AddAttr<int>(
F
fengjiayi 已提交
150
        "y_num_col_dims",
C
caoying03 已提交
151 152 153 154
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
155
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
156
        )DOC")
F
WIP  
fengjiayi 已提交
157
        .SetDefault(1)
F
fengjiayi 已提交
158
        .EqualGreaterThan(1);
159 160 161 162 163
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
164
        .SetDefault(1.0f);
165 166 167 168 169
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
170 171 172 173 174 175 176 177 178 179
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
180
    AddComment(R"DOC(
C
caoying03 已提交
181
Mul Operator.
K
kexinzhao 已提交
182

C
caoying03 已提交
183
This operator is used to perform matrix multiplication for input $X$ and $Y$.
184

185 186
The equation is:

C
caoying03 已提交
187
$$Out = X * Y$$
188

C
caoying03 已提交
189 190
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
191

192 193 194 195
)DOC");
  }
};

C
chengduo 已提交
196 197 198 199 200 201 202 203
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

204
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
205 206 207
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

208
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
209 210 211 212 213 214
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
215

Q
Qiao Longfei 已提交
216 217 218 219 220 221 222 223 224
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
225 226 227
  }
};

H
hong 已提交
228 229
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
230
 public:
H
hong 已提交
231
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
232 233

 protected:
H
hong 已提交
234 235
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> retv(new T());
S
sneaxiy 已提交
236
    retv->SetType("mul_grad");
H
hong 已提交
237 238 239 240 241 242
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
243 244 245 246
    return retv;
  }
};

247 248 249 250 251 252 253 254 255
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

L
lvmengsi 已提交
256 257
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
258 259 260
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
261 262
      ctx->ShareDim("X", "DX");
    }
263
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
264 265 266 267 268
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
269 270
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
271
 public:
H
hong 已提交
272
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
273 274

 protected:
H
hong 已提交
275 276
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> retv(new T());
277 278
    retv->SetType("mul_grad_grad");

H
hong 已提交
279 280 281 282 283
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
284

H
hong 已提交
285 286
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
287

L
lvmengsi 已提交
288
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
289
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
290
    }
H
hong 已提交
291 292
    retv->SetOutput("DX", ddw.empty() ? this->Empty() : this->InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? this->Empty() : this->InputGrad("Y"));
293

H
hong 已提交
294
    retv->SetAttrMap(this->Attrs());
295 296 297 298
    return retv;
  }
};

299 300 301
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
302
namespace ops = paddle::operators;
C
chengduo 已提交
303
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
H
hong 已提交
304 305
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MulOpGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
306

H
hong 已提交
307 308 309
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
310

311
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
312

Q
QI JUN 已提交
313
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
314 315
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
316

Q
QI JUN 已提交
317
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
318 319
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
320

321 322 323 324
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);