mul_op.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
35 36 37 38 39 40
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of MulOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Y"), true,
                      "Input(Y) of MulOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of MulOp should not be null.");
Q
Qiao Longfei 已提交
41 42 43

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
44

Q
Qiao Longfei 已提交
45 46
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
47

M
minqiyang 已提交
48 49 50
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
51

52 53 54 55 56 57 58 59 60 61
    PADDLE_ENFORCE_GT(x_dims.size(), x_num_col_dims,
                      "ShapeError: The input tensor X's dimensions of MulOp "
                      "should be larger than x_num_col_dims. But received X's "
                      "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
                      x_dims.size(), x_dims, x_num_col_dims);
    PADDLE_ENFORCE_GT(y_dims.size(), y_num_col_dims,
                      "ShapeError: The input tensor Y's dimensions of MulOp "
                      "should be larger than y_num_col_dims. But received Y's "
                      "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
                      y_dims.size(), y_dims, y_num_col_dims);
62

F
fengjiayi 已提交
63 64
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
65

66 67 68 69 70 71 72
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
        "ShapeError: After flatten the input tensor X and Y to 2-D dimensions "
        "matrix X1 and Y1, the matrix X1's width must be equal with matrix "
        "Y1's height. But received X's shape = [%s], X1's shape = [%s], X1's "
        "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = %s.",
        x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims, y_mat_dims[0]);
Y
Yu Yang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
86
    ctx->ShareLoD("X", /*->*/ "Out");
87
  }
P
Physher 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
    auto input_data_type = ctx.Input<Tensor>("X")->type();
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

102 103
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
104 105 106 107 108 109 110 111
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
112 113
};

D
dongzhihong 已提交
114
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
115
 public:
Y
Yu Yang 已提交
116
  void Make() override {
C
caoying03 已提交
117 118 119
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
120 121 122
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
123
    AddAttr<int>(
F
fengjiayi 已提交
124
        "x_num_col_dims",
C
caoying03 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
140
        )DOC")
F
WIP  
fengjiayi 已提交
141
        .SetDefault(1)
F
fengjiayi 已提交
142
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
143
    AddAttr<int>(
F
fengjiayi 已提交
144
        "y_num_col_dims",
C
caoying03 已提交
145 146 147 148
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
149
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
150
        )DOC")
F
WIP  
fengjiayi 已提交
151
        .SetDefault(1)
F
fengjiayi 已提交
152
        .EqualGreaterThan(1);
153 154 155 156 157
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
158
        .SetDefault(1.0f);
159 160 161 162 163
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
164 165 166 167 168 169 170 171 172 173
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
174
    AddComment(R"DOC(
C
caoying03 已提交
175
Mul Operator.
K
kexinzhao 已提交
176

C
caoying03 已提交
177
This operator is used to perform matrix multiplication for input $X$ and $Y$.
178

179 180
The equation is:

C
caoying03 已提交
181
$$Out = X * Y$$
182

C
caoying03 已提交
183 184
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
185

186 187 188 189
)DOC");
  }
};

C
chengduo 已提交
190 191 192 193 194 195 196 197
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

198
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
199 200 201
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

202
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
203 204 205 206 207 208
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
209

Q
Qiao Longfei 已提交
210 211 212 213 214 215 216 217 218
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
219 220 221
  }
};

S
sneaxiy 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
class MulOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad");
    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), InputGrad("Y"));
    retv->SetAttrMap(Attrs());
    return retv;
  }
};

240 241 242 243 244 245 246 247 248
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

L
lvmengsi 已提交
249 250
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
251 252 253
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
254 255
      ctx->ShareDim("X", "DX");
    }
256
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
      ctx->ShareDim("Y", "DY");
    }
  }
};

class MulDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> retv(new framework::OpDesc());
    retv->SetType("mul_grad_grad");

    retv->SetInput("X", Input("X"));
    retv->SetInput("Y", Input("Y"));
    retv->SetInput("DOut", Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", OutputGrad(framework::GradVarName("Y")));

277 278 279 280
    auto ddx = OutputGrad(framework::GradVarName("X"));
    auto ddw = OutputGrad(framework::GradVarName("Y"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
281 282 283
    if (!ddx.empty() || !ddw.empty()) {
      retv->SetOutput("DDOut", InputGrad(framework::GradVarName("Out")));
    }
284 285
    retv->SetOutput("DX", ddw.empty() ? empty_str : InputGrad("X"));
    retv->SetOutput("DY", ddx.empty() ? empty_str : InputGrad("Y"));
286 287 288 289 290 291

    retv->SetAttrMap(Attrs());
    return retv;
  }
};

292 293 294
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
295
namespace ops = paddle::operators;
C
chengduo 已提交
296 297
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
                  ops::MulOpGradMaker);
P
Physher 已提交
298

299
REGISTER_OPERATOR(mul_grad, ops::MulGradOp, ops::MulDoubleGradMaker);
P
Physher 已提交
300

301
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
302

Q
QI JUN 已提交
303
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
304 305
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
306

Q
QI JUN 已提交
307
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
308 309
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
310

311 312 313 314
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);