activation_op.cc 49.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/op_version_registry.h"
24
#include "paddle/fluid/operators/common_infer_shape_functions.h"
25
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/platform/port.h"
27 28 29
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
30

A
Adam 已提交
31 32
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
33 34 35
namespace paddle {
namespace operators {

36 37
using paddle::framework::Tensor;

38 39 40 41 42
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

43 44 45 46 47
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
48 49 50 51 52
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
53 54 55 56 57 58 59 60 61
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
62
  }
D
dzhwinter 已提交
63

H
hong 已提交
64 65
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
66
 public:
H
hong 已提交
67
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
68 69

 protected:
70
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
71 72 73 74
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
75

A
Adam 已提交
76 77
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
78 79 80
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
81
      op->SetInput("X", this->Input("X"));
82 83 84 85
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
86
      op->SetInput("Out", this->Output("Out"));
87
    }
D
dzhwinter 已提交
88
  }
89
};
D
dzhwinter 已提交
90

91 92 93 94
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
95
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
109
      oper.CanMKLDNNBeUsed(ctx)) {
110
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114 115
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
116 117
}

Q
qijun 已提交
118 119 120 121
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

122
  void InferShape(framework::InferShapeContext* ctx) const override {
123
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
124
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
125
  }
126

127
 protected:
128 129 130 131
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
132 133
};

C
chengduo 已提交
134 135 136
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
137
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
138
      const override {
139 140
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
141 142 143
  }
};

Q
qijun 已提交
144 145 146 147
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

148
  void InferShape(framework::InferShapeContext* ctx) const override {
149 150 151
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
152
  }
153

154
 protected:
155 156
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
157
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
158
  }
Q
qijun 已提交
159 160
};

D
dzhwinter 已提交
161
UNUSED constexpr char SigmoidDoc[] = R"DOC(
162
Sigmoid Activation Operator
K
Kexin Zhao 已提交
163

164
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
165

D
dzhwinter 已提交
166
)DOC";
Q
qijun 已提交
167

D
dzhwinter 已提交
168
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
169
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
170

171
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
172

D
dzhwinter 已提交
173
)DOC";
174

D
dzhwinter 已提交
175
UNUSED constexpr char ExpDoc[] = R"DOC(
176
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
177

178
$$out = e^x$$
K
Kexin Zhao 已提交
179

D
dzhwinter 已提交
180
)DOC";
Q
qijun 已提交
181

D
dzhwinter 已提交
182
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
183
Relu Activation Operator.
K
Kexin Zhao 已提交
184

185
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
186

D
dzhwinter 已提交
187
)DOC";
K
Kexin Zhao 已提交
188

D
dzhwinter 已提交
189
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
190
Tanh Activation Operator.
K
Kexin Zhao 已提交
191

Q
update  
qiaolongfei 已提交
192
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
193

D
dzhwinter 已提交
194
)DOC";
195

D
dzhwinter 已提交
196
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
197
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
198

Y
Yan Chunwei 已提交
199
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
200

D
dzhwinter 已提交
201
)DOC";
K
Kexin Zhao 已提交
202

D
dzhwinter 已提交
203
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
204
Sqrt Activation Operator.
K
Kexin Zhao 已提交
205

N
Noel 已提交
206
$$out=\\sqrt{x}=x^{1/2}$$
207

208 209
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
210

D
dzhwinter 已提交
211
)DOC";
212

Z
zhoukunsheng 已提交
213 214 215 216 217
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

218
$$out = \\frac{1}{\\sqrt{x}}$$
Z
zhoukunsheng 已提交
219 220 221

)DOC";

D
dzhwinter 已提交
222
UNUSED constexpr char AbsDoc[] = R"DOC(
Y
Yang Zhang 已提交
223
Abs Operator.
K
Kexin Zhao 已提交
224

225
$$out = |x|$$
K
Kexin Zhao 已提交
226

D
dzhwinter 已提交
227
)DOC";
228

D
dzhwinter 已提交
229
UNUSED constexpr char CeilDoc[] = R"DOC(
230
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
231

N
Noel 已提交
232
$$out = \\lceil x \\rceil$$
D
dzhwinter 已提交
233

D
dzhwinter 已提交
234
)DOC";
D
dzhwinter 已提交
235

D
dzhwinter 已提交
236
UNUSED constexpr char FloorDoc[] = R"DOC(
237
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
238

N
Noel 已提交
239
$$out = \\lfloor x \\rfloor$$
D
dzhwinter 已提交
240

D
dzhwinter 已提交
241
)DOC";
D
dzhwinter 已提交
242

D
dzhwinter 已提交
243
UNUSED constexpr char CosDoc[] = R"DOC(
244
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
245

Y
Yang Zhang 已提交
246 247
Input range is `(-inf, inf)` and output range is `[-1,1]`.

248
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
249

D
dzhwinter 已提交
250
)DOC";
C
add cos  
chengduoZH 已提交
251

J
joejiong 已提交
252 253 254 255 256 257 258 259 260
UNUSED constexpr char TanDoc[] = R"DOC(
Tangent Operator. Computes tangent of x element-wise.

Input range is `(k*pi-pi/2, k*pi+pi/2)` and output range is `(-inf, inf)`.

$$out = tan(x)$$

)DOC";

D
dzhwinter 已提交
261
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
262 263
Sine Activation Operator.

264
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
265

D
dzhwinter 已提交
266
)DOC";
C
add sin  
chengduoZH 已提交
267

268 269 270 271 272 273 274 275 276 277 278 279 280 281
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
282
UNUSED constexpr char RoundDoc[] = R"DOC(
283
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
284

N
Noel 已提交
285
.. code-block:: text
286 287 288 289 290 291 292 293

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
294

D
dzhwinter 已提交
295
)DOC";
D
dzhwinter 已提交
296

D
dzhwinter 已提交
297
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
298
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
299

300
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
301

D
dzhwinter 已提交
302
)DOC";
303

D
dzhwinter 已提交
304
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
305
Log Activation Operator.
K
Kexin Zhao 已提交
306

307
$$out = \ln(x)$$
K
Kexin Zhao 已提交
308 309 310

Natural logarithm of x.

D
dzhwinter 已提交
311 312
)DOC";

J
joejiong 已提交
313 314 315 316 317 318 319 320 321
UNUSED constexpr char Log2Doc[] = R"DOC(
Log2 Activation Operator.

$$out = \log_2x$$

logarithm of x base to 2.

)DOC";

J
joejiong 已提交
322 323 324 325 326 327 328 329 330
UNUSED constexpr char Log10Doc[] = R"DOC(
Log10 Activation Operator.

$$out = \log_10_x$$

logarithm of x base to 10.

)DOC";

331 332 333 334 335 336 337 338 339
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
340
UNUSED constexpr char SquareDoc[] = R"DOC(
341
The OP square each elements of the inputs.
D
dzhwinter 已提交
342

343
$$out = x^2$$
344

D
dzhwinter 已提交
345 346
)DOC";

D
dzhwinter 已提交
347
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
348 349
Softsign Activation Operator.

350
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
351 352 353

)DOC";

T
tink2123 已提交
354 355 356 357 358 359
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
360
Arccosine Operator.
361

T
tink2123 已提交
362
$$out = \cos^{-1}(x)$$
363

T
tink2123 已提交
364 365 366
)DOC");
  }
};
367

T
tink2123 已提交
368 369 370
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
371 372 373
    AddInput("X",
             "Input of asin operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
374 375
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
376
Arcsine Operator.
377

T
tink2123 已提交
378
$$out = \sin^{-1}(x)$$
379

T
tink2123 已提交
380 381 382
)DOC");
  }
};
383

T
tink2123 已提交
384 385 386
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
W
wawltor 已提交
387 388 389
    AddInput("X",
             "Input of atan operator, an N-D Tensor, with data type float32, "
             "float64 or float16.");
T
tink2123 已提交
390 391
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
392
Arctangent Operator.
393

394
$$out = \tan^{-1}(x)$$
395

T
tink2123 已提交
396 397 398
)DOC");
  }
};
399

D
dzhwinter 已提交
400
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
401
 public:
Y
Yu Yang 已提交
402
  void Make() override {
W
Wilber 已提交
403 404 405 406 407 408 409 410
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
411 412 413
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
414
    AddComment(R"DOC(
D
dzhwinter 已提交
415
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
416

W
Wilber 已提交
417
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
418 419

)DOC");
420 421 422
  }
};

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "Input of Softplus operator, an N-D Tensor, with data type "
             "float32, float64 or float16.");
    AddOutput(
        "Out",
        "Output of Softplus operator, a Tensor with shape same as input.");
    AddAttr<float>("beta", "The value of beta for Softplus.").SetDefault(1.0f);
    AddAttr<float>("threshold", "The value of threshold for Softplus.")
        .SetDefault(20.0f);
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel.")
        .SetDefault(false);
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn.")
        .SetDefault(false);
    AddComment(R"DOC(
:strong:`Softplus Activation Operator`

..  math::
    out = \frac{1}{\beta} * \log(1 + \exp(\beta * x)) \\
    \text{For numerical stability, the implementation reverts to the linear function when :}\,x \times \beta > threshold.

)DOC");
  }
};

D
dzhwinter 已提交
453
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
454
 public:
Y
Yu Yang 已提交
455
  void Make() override {
D
dzhwinter 已提交
456 457 458
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
459
    AddComment(R"DOC(
460 461 462
:strong:`Softshrink Activation Operator`

..  math::
463
    out = \begin{cases}
464 465 466 467
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
468 469

)DOC");
K
kexinzhao 已提交
470 471 472
  }
};

D
dzhwinter 已提交
473
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
474
 public:
Y
Yu Yang 已提交
475
  void Make() override {
D
dzhwinter 已提交
476 477
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
478 479
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
480
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
481
    AddComment(R"DOC(
Y
yuyang18 已提交
482
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
483

Y
yuyang18 已提交
484 485 486 487 488 489
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
490 491

)DOC");
492 493 494
  }
};

495 496
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
497
  void Make() override {
498 499 500 501 502 503
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
504 505 506 507
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
508
    AddComment(R"DOC(
K
kexinzhao 已提交
509
BRelu Activation Operator.
K
Kexin Zhao 已提交
510

511
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
512 513

)DOC");
514 515 516 517 518
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
519
  void Make() override {
520
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
521
    AddOutput("Out", "Output of SoftRelu operator");
522 523
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
524
    AddComment(R"DOC(
K
kexinzhao 已提交
525
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
526

527
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
528 529

)DOC");
530 531 532
  }
};

533 534
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
535
  void Make() override {
536 537 538 539 540 541
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
542
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
543
    AddComment(R"DOC(
K
kexinzhao 已提交
544
ELU Activation Operator.
K
Kexin Zhao 已提交
545 546 547 548

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

549
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
550 551

)DOC");
552 553 554
  }
};

555 556
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
557
  void Make() override {
Z
zhupengyang 已提交
558 559 560 561 562 563 564 565
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
566
        .SetDefault(6.0f);
A
Adam 已提交
567 568 569
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
570
    AddComment(R"DOC(
K
kexinzhao 已提交
571
Relu6 Activation Operator.
K
Kexin Zhao 已提交
572

573
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
574 575

)DOC");
576 577 578
  }
};

579 580
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
581
  void Make() override {
582
    AddInput("X", "Input of Pow operator");
583 584 585 586 587
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
588
    AddOutput("Out", "Output of Pow operator");
589
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
590
    AddComment(R"DOC(
K
kexinzhao 已提交
591
Pow Activation Operator.
K
Kexin Zhao 已提交
592

593
$$out = x^{factor}$$
K
Kexin Zhao 已提交
594 595

)DOC");
596 597 598 599 600
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
601
  void Make() override {
602 603
    AddInput("X",
             "Input of STanh operator."
N
Noel 已提交
604
             " A Tensor with type float32, float64.");
605 606 607
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
608 609
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
610
    AddComment(R"DOC(
K
kexinzhao 已提交
611
STanh Activation Operator.
K
Kexin Zhao 已提交
612

Y
Yan Chunwei 已提交
613
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
614 615

)DOC");
Q
qijun 已提交
616 617 618
  }
};

619 620
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
621
  void Make() override {
622
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
623
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
624 625
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
626
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
627
    AddComment(R"DOC(
Y
yuyang18 已提交
628
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
629

Y
yuyang18 已提交
630
..  math::
K
Kexin Zhao 已提交
631

Y
yuyang18 已提交
632
    out = \begin{cases}
Y
yuyang18 已提交
633
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
634 635
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
636
)DOC");
637 638 639
  }
};

640 641
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
642
  void Make() override {
643 644 645 646 647
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
648
        .SetDefault(0.2f);
649 650 651
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
652
        .SetDefault(0.5f);
653
    AddComment(R"DOC(
K
kexinzhao 已提交
654
HardSigmoid Activation Operator.
655

656
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
657
which is much faster than sigmoid.
658

659
$$out = \max(0, \min(1, slope * x + offset))$$
660

K
Kexin Zhao 已提交
661
)DOC");
662 663 664
  }
};

A
Abhinav Arora 已提交
665 666
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
667
  void Make() override {
A
Abhinav Arora 已提交
668
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
669
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
670
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
671 672 673
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
674 675 676
    AddComment(R"DOC(
Swish Activation Operator.

677
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
678 679 680 681 682

)DOC");
  }
};

H
huangjun12 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

699
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
700 701 702 703 704 705 706 707 708

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
709 710 711 712 713 714 715
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
716
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
717 718 719 720
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
J
joejiong 已提交
721
REGISTER_ACTIVATION_OP_MAKER(Tan, TanDoc);
D
dzhwinter 已提交
722
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
723 724
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
725 726 727
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
J
joejiong 已提交
728
REGISTER_ACTIVATION_OP_MAKER(Log2, Log2Doc);
J
joejiong 已提交
729
REGISTER_ACTIVATION_OP_MAKER(Log10, Log10Doc);
730
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
731 732 733
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

734
template <ActBwdOpFwdDeps kDepValue>
735 736 737 738 739
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
740
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
741
      if (ctx->HasOutput("DX")) {
742 743 744
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
745
      if (ctx->HasOutput("DDOut")) {
746 747 748
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
749
    }
750
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
751
      if (ctx->HasOutput("DOut")) {
752 753 754
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
783 784 785
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
786 787 788 789 790 791 792 793 794 795
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

Z
Zhong Hui 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
// AbsGrad: dx=dy if x >=0 else -dy
// AbsDoubleGrad: ddy = ddx if x >=0 else -ddx
template <typename T>
class AbsDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("abs_grad_grad");
    // input1: x
    op->SetInput("X", this->Input("X"));
    // input2: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    // output: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

816 817
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
H
hong 已提交
818 819
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
820
 public:
H
hong 已提交
821
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
822 823

 protected:
824
  void Apply(GradOpPtr<T> op) const override {
825 826
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
827
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
828
    // input2: ddx
H
hong 已提交
829 830
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
831
    // output: ddy
H
hong 已提交
832
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
833 834 835
  }
};

836 837
// leaky_relu Grad: dx=dy if x>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if x>=0 else alpha * ddx
H
hong 已提交
838
template <typename T>
839
class LeakyReluDoubleGradMaker
H
hong 已提交
840
    : public ::paddle::framework::SingleGradOpMaker<T> {
841
 public:
H
hong 已提交
842
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
843 844

 protected:
845
  void Apply(GradOpPtr<T> op) const override {
846
    op->SetType("leaky_relu_grad_grad");
847 848
    // input1: X
    op->SetInput("X", this->Input("X"));
849
    // X@GRAD@GRAD: ddx
H
hong 已提交
850 851
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
852
    // Out@GRAD@GRAD: ddy
H
hong 已提交
853
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
854 855 856
  }
};

D
Double_V 已提交
857 858 859 860 861 862 863 864
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
865
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
866 867 868 869 870 871 872 873 874 875 876 877 878 879
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
880 881
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
882 883
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
884
 public:
H
hong 已提交
885
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
886 887

 protected:
888
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
889
    op->SetType("sqrt_grad_grad");
H
hong 已提交
890 891 892 893 894 895
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
896 897 898
  }
};

899 900
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
901 902
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
903
 public:
H
hong 已提交
904
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
905 906

 protected:
907
  void Apply(GradOpPtr<T> op) const override {
908
    op->SetType("square_grad_grad");
H
hong 已提交
909
    op->SetInput("X", this->Input("X"));
910
    // Out@GRAD: dy
H
hong 已提交
911
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
912
    // X@GRAD@GRAD: ddx
H
hong 已提交
913
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
914

H
hong 已提交
915
    op->SetAttrMap(this->Attrs());
916 917

    // X@GRAD: dx
H
hong 已提交
918
    op->SetOutput("DX", this->InputGrad("X"));
919
    // Out@GRAD@GRAD: ddy
H
hong 已提交
920
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
921 922 923
  }
};

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
// log Grad: dx = dout / x
// log Grad Grad: ddout = ddx / x; dx = -(dout / x) * (ddx / x)
template <typename T>
class LogDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("log_grad_grad");
    op->SetInput("X", this->Input("X"));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetAttrMap(this->Attrs());
    // X@GRAD: dx
    op->SetOutput("DX", this->InputGrad("X"));
    // Out@GRAD@GRAD: ddy
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

946
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
947 948
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
949
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
950
                           {"DDX", "DDOut"});
951

H
hong 已提交
952 953
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
954
 public:
H
hong 已提交
955
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
956 957

 protected:
958
  void Apply(GradOpPtr<T> op) const override {
959
    op->SetType("pow_grad");
H
hong 已提交
960 961 962 963 964
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
1019
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
1020 1021 1022 1023
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1024
namespace plat = paddle::platform;
1025

1026 1027 1028 1029
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
1030 1031 1032 1033
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
1034
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
1035
                       ops::ActFwdInplaceInferer, void>::type);             \
1036
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
1037
                    ops::ActivationGradOpInplaceInferer);
1038 1039 1040

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
1051
                                ops::grad_functor<double>>);
1052

1053 1054
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
1055

1056
/* ==========================    relu register  ============================= */
1057 1058
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1059 1060 1061 1062
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1063
    ops::ActFwdInplaceInferer);
1064
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
1065
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1066 1067
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
1068 1069
REGISTER_OPERATOR(
    relu_grad_grad,
1070
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
1071
    ops::ActivationDoubleGradOpInplaceInferer);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
1083
/* ========================================================================== */
1084

1085
/* ======================== leaky relu register  ============================ */
1086 1087 1088
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1089 1090 1091 1092
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1093
    ops::ActFwdInplaceInferer);
1094
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
1095
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1096 1097
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
1098 1099
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
1100
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
1101
    ops::ActivationDoubleGradOpInplaceInferer);
1102

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1113 1114
/* ========================================================================== */

D
Double_V 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1124
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1125 1126 1127 1128 1129
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1130
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1143 1144 1145
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1146 1147 1148 1149
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1150
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1151
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1152
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1153 1154
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1155 1156
REGISTER_OPERATOR(
    sqrt_grad_grad,
1157
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1158
    ops::ActivationDoubleGradOpInplaceInferer);
1159

L
lvmengsi 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1170 1171 1172 1173
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1174 1175 1176 1177
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1178
    ops::ActFwdInplaceInferer);
1179
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1180
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1181 1182
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1183 1184
REGISTER_OPERATOR(
    square_grad_grad,
1185
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1186
    ops::ActivationDoubleGradOpInplaceInferer);
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1206 1207 1208 1209 1210 1211 1212 1213

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1214 1215 1216 1217 1218
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1219
/* ========================================================================== */
1220 1221 1222 1223 1224

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1225 1226
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1227
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1228
                     ops::ActFwdInplaceInferer, void>::type);
1229
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1230
                  ops::ActivationGradOpInplaceInferer);
1231 1232 1233

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1234 1235 1236
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1237 1238 1239
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1255
                  ops::ActivationGradOpInplaceInferer);
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
Z
Zhong Hui 已提交
1287 1288 1289 1290 1291 1292 1293
                  ops::ActivationGradOpInplaceInferer,
                  ops::AbsDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::AbsDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    abs_grad_grad,
    ops::ActivationOpDoubleGrad<ops::AbsGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
Z
Zhong Hui 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
REGISTER_OP_CPU_KERNEL(
    abs_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::AbsGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::AbsGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::AbsGradGradFunctor<plat::float16>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::AbsGradGradFunctor<int>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::AbsGradGradFunctor<int64_t>>);
1325
/* ========================================================================== */
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
/* ==========================  Log register ==================================*/
REGISTER_OPERATOR(
    log, ops::ActivationOp, ops::LogOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LogGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(log_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInferer,
                  ops::LogDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LogDoubleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(
    log_grad_grad,
    ops::ActivationOpDoubleGrad<ops::LogGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInferer);

REGISTER_ACTIVATION_CPU_KERNEL(log, Log, LogFunctor, LogGradFunctor);

REGISTER_OP_CPU_KERNEL(
    log_grad_grad, ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::LogGradGradFunctor<float>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<double>>,
    ops::LogDoubleGradKernel<plat::CPUDeviceContext,
                             ops::LogGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
REGISTER_OP_VERSION(softplus)
    .AddCheckpoint(
        R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
        paddle::framework::compatible::OpVersionDesc()
            .NewAttr("beta", "The beta value of the new formula", 1.0f)
            .NewAttr("threshold", "The threshold value of the new formula",
                     20.0f));

1385
/* ========================================================================== */