linear_chain_crf_op.h 21.9 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
18
#include "paddle/operators/math/math_function.h"
C
caoying03 已提交
19 20 21 22

namespace paddle {
namespace operators {

C
caoying03 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace {
template <typename T>
T NormalizeL1(T* x, size_t len) {
  T sum = 0.;
  for (size_t i = 0; i < len; ++i) sum += x[i];
  // (This comment is from the old LinearChainCRFLayer.)
  // Right now, we just bet that sum won't be zero. If this really happens, we
  // will figure out what should be done then.
  PADDLE_ENFORCE(sum,
                 "The unnormalized probabilities of all possible unfinished "
                 "sequences must be greater than 0.");
  T s = 1. / sum;
  for (size_t i = 0; i < len; ++i) x[i] *= s;
  return sum;
}
}  // namespace

using framework::LoDTensor;
using framework::LoD;
42
using framework::Tensor;
C
caoying03 已提交
43 44 45 46
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

47
template <typename Place, typename T>
C
caoying03 已提交
48
class LinearChainCRFOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
49
 public:
C
caoying03 已提交
50 51 52
  void Compute(const framework::ExecutionContext& ctx) const override {
    // TODO(caoying) The checks related to LoD information should be
    // moved into InferShape once after the InferShape is refactored.
53
    PADDLE_ENFORCE_EQ(ctx.Input<LoDTensor>("Emission")->NumLevels(), 1UL,
C
caoying03 已提交
54
                      "The Input(Emission) should be a sequence.");
55
    PADDLE_ENFORCE_EQ(ctx.Input<LoDTensor>("Label")->NumLevels(), 1UL,
C
caoying03 已提交
56
                      "The Input(Label) should be a sequence.");
57 58
    auto in_lod = ctx.Input<LoDTensor>("Label")->lod();
    PADDLE_ENFORCE(in_lod.size(), "Input(Label) must be a sequence.");
C
caoying03 已提交
59
    const size_t level = 0;
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    const size_t seq_num = in_lod[level].size() - 1;

    // These local variables hold the inputs and outputs, garanteeing them on
    // CPU memory, to provide a consistent reference.
    // TODO(caoying) Fix this by moving all these local variables into the
    // class's data members once we can profile the whole training process.
    LoDTensor* emission_weights = nullptr;
    LoDTensor emission_weight_tensor;
    Tensor* transition_weights = nullptr;
    Tensor transition_weight_tensor;
    LoDTensor* label = nullptr;
    LoDTensor label_tensor;

    Tensor* emission_exps = nullptr;
    Tensor emission_exps_tensor;
    Tensor* transition_exps = nullptr;
    Tensor transition_exps_tensor;
    Tensor* alpha = nullptr;
    Tensor alpha_tensor;
    Tensor* ll = nullptr;
    Tensor ll_tensor;

    if (platform::is_gpu_place(ctx.GetPlace())) {
      emission_weights = &emission_weight_tensor;
      transition_weights = &transition_weight_tensor;
      label = &label_tensor;

      CopyInputsToCpuMemory(
          ctx.device_context(), *ctx.Input<LoDTensor>("Emission"),
          *ctx.Input<Tensor>("Transition"), *ctx.Input<LoDTensor>("Label"),
          emission_weights, transition_weights, label);

      emission_exps = &emission_exps_tensor;
      emission_exps->Resize(emission_weights->dims());

      transition_exps = &transition_exps_tensor;
      transition_exps->Resize(transition_weights->dims());

      alpha = &alpha_tensor;
      alpha->Resize(ctx.Output<Tensor>("Alpha")->dims());

      ll = &ll_tensor;
    } else {
      emission_weights =
          const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Emission"));
      transition_weights = const_cast<Tensor*>(ctx.Input<Tensor>("Transition"));
      label = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Label"));

      emission_exps = ctx.Output<Tensor>("EmissionExps");
      transition_exps = ctx.Output<Tensor>("TransitionExps");
      alpha = ctx.Output<Tensor>("Alpha");
      ll = ctx.Output<Tensor>("LogLikelihood");
    }
C
caoying03 已提交
113

114 115 116 117 118 119 120 121 122 123 124
    // Because the computation codes only runs on CPU, here the memory for all
    // the outputs is FIXED to be allocated on the CPU memory.
    emission_exps->mutable_data<T>(platform::CPUPlace());
    transition_exps->mutable_data<T>(platform::CPUPlace());
    alpha->mutable_data<T>(platform::CPUPlace());

    // Resize the output tensor to its correct dimension.
    ll->Resize({static_cast<int>(seq_num), 1});
    ll->mutable_data<T>(platform::CPUPlace());

    // Now, all the inputs and outputs should be on the CPU memory.
C
caoying03 已提交
125 126 127 128 129 130 131
    auto emission_dims = emission_weights->dims();
    const size_t batch_size = emission_dims[0];
    const size_t tag_num = emission_dims[1];

    Tensor emission_row_max;
    emission_row_max.mutable_data<T>(
        framework::make_ddim({static_cast<int>(batch_size), 1}),
132
        platform::CPUPlace());
C
caoying03 已提交
133

134
    auto place = ctx.GetEigenDevice<platform::CPUPlace>();
C
caoying03 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    auto x = EigenMatrix<T>::From(*emission_weights);
    auto x_row_max = EigenMatrix<T>::From(emission_row_max);
    x_row_max.device(place) =
        x.maximum(Eigen::DSizes<int, 1>(1))
            .reshape(Eigen::DSizes<int, 2>(int(batch_size), 1));

    auto x_exps = EigenMatrix<T>::From(*emission_exps);
    x_exps.device(place) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();

    auto w = EigenMatrix<T>::From(*transition_weights);
    auto w_exps = EigenMatrix<T>::From(*transition_exps);
    w_exps.device(place) = w.exp();

149
    T* log_likelihood = ll->data<T>();
C
caoying03 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    for (size_t i = 0; i < seq_num; ++i) {
      int start_pos = static_cast<int>(in_lod[level][i]);
      int end_pos = static_cast<int>(in_lod[level][i + 1]);
      if (end_pos == start_pos) {
        // If an empty input sequence is given, pad 0 for its cost.
        log_likelihood[i] = 0.;
        continue;
      }

      const Tensor one_seq = emission_weights->Slice(start_pos, end_pos);
      Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos);
      Tensor one_seq_exps = emission_exps->Slice(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice(start_pos, end_pos);
      Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);

      log_likelihood[i] = ForwardOneSequence(
          one_seq, one_seq_row_max, one_seq_exps, *transition_weights,
          *transition_exps, one_seq_label, &one_seq_alpha);
    }
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    if (platform::is_gpu_place(ctx.GetPlace())) {
      CopyOutputsToGpuMemory(
          ctx.device_context(), *emission_exps, *transition_exps, *alpha, *ll,
          ctx.Output<Tensor>("EmissionExps"),
          ctx.Output<Tensor>("TransitionExps"), ctx.Output<Tensor>("Alpha"),
          ctx.Output<Tensor>("LogLikelihood"));
    }
  };

 private:
  void CopyInputsToCpuMemory(const platform::DeviceContext& ctx,
                             const LoDTensor& emission_weights_src,
                             const Tensor& transition_weights_src,
                             const LoDTensor& label_src,
                             LoDTensor* emission_weights_dst,
                             Tensor* transition_weights_dst,
                             LoDTensor* label_dst) const {
    // Copy the inputs from GPU memory to CPU memory if this operators runs on
    // GPU device.
    auto copyLoDTensor = [](const platform::DeviceContext& ctx,
                            const LoDTensor& src, LoDTensor* dst) {
      dst->mutable_data<T>(src.dims(), platform::CPUPlace());
      dst->CopyFrom(src, platform::CPUPlace(), ctx);

    };
    copyLoDTensor(ctx, emission_weights_src, emission_weights_dst);
    copyLoDTensor(ctx, label_src, label_dst);

    transition_weights_dst->mutable_data<T>(transition_weights_src.dims(),
                                            platform::CPUPlace());
    transition_weights_dst->CopyFrom(transition_weights_src,
                                     platform::CPUPlace(), ctx);
  }

  void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx,
                              const Tensor& emission_exps_src,
                              const Tensor& transition_exps_src,
                              const Tensor& alpha_src, const Tensor& ll_src,
                              Tensor* emission_exps_dst,
                              Tensor* transition_exps_dst, Tensor* alpha_dst,
                              Tensor* ll_dst) const {
    // Copy the forward results from CPU memory to GPU memory if this
    // operators runs on GPU device.
    auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src,
                         Tensor* dst) {
      dst->mutable_data<T>(platform::GPUPlace());
      dst->CopyFrom(src, platform::GPUPlace(), ctx);
    };
    copyTensor(ctx, emission_exps_src, emission_exps_dst);
    copyTensor(ctx, transition_exps_src, transition_exps_dst);
    copyTensor(ctx, alpha_src, alpha_dst);
    copyTensor(ctx, ll_src, ll_dst);
C
caoying03 已提交
222
  };
223

C
caoying03 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max,
                       const Tensor& emission_exps, const Tensor& trans_weights,
                       const Tensor& trans_weight_exps, const Tensor& label,
                       Tensor* alpha) const {
    const T* x = emission.data<T>();
    const T* x_row_max = emission_row_max.data<T>();
    const T* x_exps = emission_exps.data<T>();
    const T* w = trans_weights.data<T>();
    const T* w_exps = trans_weight_exps.data<T>();
    T* alpha_value = alpha->data<T>();

    auto x_dims = emission.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    // The 1st row of w are transition weights for start mask.
    // The 2nd row of w are transition weights for end mask.
    // Transition weights between other tags begin from the 3rd row of w.
    const size_t state_trans_base_idx = 2;

    for (size_t i = 0; i < tag_num; ++i) {
      alpha_value[i] = w_exps[i] * x_exps[i];
    }
    T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
          sum += alpha_value[(k - 1) * tag_num + j] *
                 w_exps[(j + state_trans_base_idx) * tag_num + i];
        }
        alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (*).
      ll -= x_row_max[k] +
            std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
    }
    ll -= std::log(sum);
    // Now ll is equal to -log(Z).

    const int* lbl = label.data<int>();
    PADDLE_ENFORCE_LT(
        *std::max_element(lbl, lbl + seq_length), tag_num,
        "An invalid tag label that execesses the largest tag number.");

    // Calculate the nominator part, which depends on the label sequence.
    ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
          w[tag_num + lbl[seq_length - 1]] /*end transition*/;
    for (size_t k = 1; k < seq_length; ++k) {
      ll += x[k * tag_num + lbl[k]] +
            w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]];
    }
    return -ll;
  };
C
caoying03 已提交
282 283
};

284
template <typename Place, typename T>
C
caoying03 已提交
285
class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
286
 public:
C
caoying03 已提交
287
  void Compute(const framework::ExecutionContext& ctx) const override {
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    const size_t level = 0;  // currently, only support sequence.
    auto lod = ctx.Input<LoDTensor>("Label")->lod();
    PADDLE_ENFORCE(lod.size(), "Input(Label) must be a sequence.");

    // These local variables hold the inputs and outputs, garanteeing them on
    // CPU memory, to provide a consistent reference.
    // TODO(caoying) Fix this by moving all these local variables into the
    // class's data members once we can profile the training process.
    Tensor* label = nullptr;
    Tensor label_tensor;
    Tensor* emission_exps = nullptr;
    Tensor emission_exps_tensor;
    Tensor* transition_exps = nullptr;
    Tensor transition_exps_tensor;
    Tensor* alpha = nullptr;
    Tensor alpha_tensor;
    Tensor ll_grad_tensor;
    T* ll_grad = nullptr;

    Tensor* emission_grad = nullptr;
    Tensor emission_grad_tensor;
    Tensor* transition_grad = nullptr;
    Tensor transition_grad_tensor;

    if (platform::is_gpu_place(ctx.GetPlace())) {
      label = &label_tensor;
      emission_exps = &emission_exps_tensor;
      transition_exps = &transition_exps_tensor;
      alpha = &alpha_tensor;
      CopyInputsToCpuMemory(
          ctx.device_context(), *ctx.Input<LoDTensor>("Label"),
          *ctx.Input<Tensor>("EmissionExps"),
          *ctx.Input<Tensor>("TransitionExps"), *ctx.Input<Tensor>("Alpha"),
          *ctx.Input<Tensor>(framework::GradVarName("LogLikelihood")), label,
          emission_exps, transition_exps, alpha, &ll_grad_tensor);
      ll_grad = ll_grad_tensor.data<T>();

      if (ctx.Output<Tensor>(framework::GradVarName("Emission"))) {
        emission_grad = &emission_grad_tensor;
        emission_grad->Resize(emission_exps->dims());
      }

      if (ctx.Output<Tensor>(framework::GradVarName("Transition"))) {
        transition_grad = &transition_grad_tensor;
        transition_grad->Resize(transition_exps->dims());
      }
    } else {
      label = const_cast<LoDTensor*>(ctx.Input<LoDTensor>("Label"));
      emission_exps = const_cast<Tensor*>(ctx.Input<Tensor>("EmissionExps"));
      transition_exps =
          const_cast<Tensor*>(ctx.Input<Tensor>("TransitionExps"));
      alpha = const_cast<Tensor*>(ctx.Input<Tensor>("Alpha"));
      ll_grad = const_cast<Tensor*>(
                    ctx.Input<Tensor>(framework::GradVarName("LogLikelihood")))
                    ->data<T>();

      emission_grad = ctx.Output<Tensor>(framework::GradVarName("Emission"));
      transition_grad =
          ctx.Output<Tensor>(framework::GradVarName("Transition"));
    }
    PADDLE_ENFORCE(emission_grad, "Output(Emission@Grad) should not be null.");
    emission_grad->mutable_data<T>(platform::CPUPlace());
    math::SetConstant<platform::CPUPlace, T>()(ctx.device_context(),
                                               emission_grad, 0.);
    if (transition_grad) {
      transition_grad->mutable_data<T>(platform::CPUPlace());
      math::SetConstant<platform::CPUPlace, T>()(ctx.device_context(),
                                                 transition_grad, 0.);
C
caoying03 已提交
356
    }
357
    // Now, all the inputs and outputs should be on the CPU memory.
C
caoying03 已提交
358 359 360 361

    auto emission_dims = emission_exps->dims();
    // Beta is the memo table used in dynamic programming to calculate the
    // backwark vectors. For a backward vector i (the i-th row of beta), it
362 363
    // captures the unnormalized probabilities of partial sequences starting
    // at position i.
C
caoying03 已提交
364
    Tensor beta;
365
    beta.mutable_data<T>(emission_dims, platform::CPUPlace());
C
caoying03 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

    for (size_t i = 0; i < lod[level].size() - 1; ++i) {
      int start_pos = static_cast<int>(lod[level][i]);
      int end_pos = static_cast<int>(lod[level][i + 1]);
      if (end_pos == start_pos) continue;

      const Tensor one_seq_emission_exps =
          emission_exps->Slice(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice(start_pos, end_pos);
      const Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);
      Tensor one_seq_beta = beta.Slice(start_pos, end_pos);
      Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos);

      BackwardOneSequence(ctx.device_context(), ll_grad[i],
                          one_seq_emission_exps, *transition_exps,
                          one_seq_alpha, one_seq_label, &one_seq_beta,
382 383 384 385 386 387 388 389
                          transition_grad, &one_seq_emission_grad);
    }

    if (platform::is_gpu_place(ctx.GetPlace())) {
      CopyOutputsToGpuMemory(
          ctx.device_context(), emission_grad, transition_grad,
          ctx.Output<Tensor>(framework::GradVarName("Emission")),
          ctx.Output<Tensor>(framework::GradVarName("Transition")));
C
caoying03 已提交
390 391
    }
  };
C
caoying03 已提交
392

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
 private:
  void CopyInputsToCpuMemory(const platform::DeviceContext& ctx,
                             const LoDTensor& label_src,
                             const Tensor& emission_exps_src,
                             const Tensor& transition_exps_src,
                             const Tensor& alpha_src, const Tensor& ll_grad_src,
                             Tensor* label_dst, Tensor* emission_exps_dst,
                             Tensor* transition_exps_dst, Tensor* alpha_dst,
                             Tensor* ll_grad_dst) const {
    // Copy the inputs from GPU memory to CPU memory when this operators runs on
    // GPU device.
    label_dst->mutable_data<T>(label_src.dims(), platform::CPUPlace());
    label_dst->CopyFrom(label_src, platform::CPUPlace(), ctx);

    auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor& src,
                         Tensor* dst) {
      dst->mutable_data<T>(src.dims(), platform::CPUPlace());
      dst->CopyFrom(src, platform::CPUPlace(), ctx);
    };
    copyTensor(ctx, emission_exps_src, emission_exps_dst);
    copyTensor(ctx, transition_exps_src, transition_exps_dst);
    copyTensor(ctx, alpha_src, alpha_dst);
    copyTensor(ctx, ll_grad_src, ll_grad_dst);
  };

  void CopyOutputsToGpuMemory(const platform::DeviceContext& ctx,
                              const Tensor* emission_grad_src,
                              const Tensor* transition_grad_src,
                              Tensor* emission_grad_dst,
                              Tensor* transition_grad_dst) const {
    // Copy the backward results from CPU memory to GPU
    // memory if this operators runs on GPU device.
    auto copyTensor = [](const platform::DeviceContext& ctx, const Tensor* src,
                         Tensor* dst) {
      if (src && dst) {
        dst->mutable_data<T>(platform::GPUPlace());
        dst->CopyFrom(*src, platform::GPUPlace(), ctx);
      }
    };
    copyTensor(ctx, emission_grad_src, emission_grad_dst);
    copyTensor(ctx, transition_grad_src, transition_grad_dst);
  };

C
caoying03 已提交
436
  void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad,
C
caoying03 已提交
437 438 439
                           const Tensor& emission_exps,
                           const Tensor& transition_exps, const Tensor& alpha,
                           const Tensor& label, Tensor* beta,
C
caoying03 已提交
440
                           Tensor* transition_grad,
C
caoying03 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
                           Tensor* emission_grad) const {
    const T* w_exps = transition_exps.data<T>();
    const T* x_exps = emission_exps.data<T>();
    const int* label_value = label.data<int>();
    T* beta_value = beta->data<T>();

    auto x_dims = emission_exps.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    const size_t state_trans_base_idx = 2;

    // Calculate the backward vectors: beta.
    // First, calculate the initialition state.
    for (size_t i = 0; i < tag_num; ++i) {
      beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
    }
    NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);
    for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
          sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *
                 x_exps[(k + 1) * tag_num + j] *
                 beta_value[(k + 1) * tag_num + j];
        }
        beta_value[k * tag_num + i] = sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (**).
      NormalizeL1<T>(beta_value + k * tag_num, tag_num);
    }

472
    auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
C
caoying03 已提交
473 474
    auto alpha_mat = EigenMatrix<T>::From(alpha);
    auto beta_mat = EigenMatrix<T>::From(*beta);
475 476

    auto* place = ctx.GetEigenDevice<platform::CPUPlace>();
C
caoying03 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
    auto prob = alpha_mat * beta_mat;
    auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                       .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                       .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
    x_grad_mat.device(*place) = prob / row_sum;

    for (size_t k = 0; k < seq_length; ++k) {
      x_grad_mat(k, label_value[k]) -= static_cast<T>(1.);
    }

    if (transition_grad) {
      T* trans_grad = transition_grad->data<T>();
      for (size_t k = 0; k < tag_num; ++k) {
        trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
        trans_grad[tag_num + k] +=
            x_grad_mat(/*to end state*/ seq_length - 1, k);
      }

      auto x_exps_mat = EigenMatrix<T>::From(emission_exps);

      // TODO(caoying): Fix this to avoid using this local variable.
      Tensor tmp;
499
      tmp.mutable_data<T>(beta->dims(), platform::CPUPlace());
C
caoying03 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
      auto tmp_mat = EigenMatrix<T>::From(tmp);
      auto prob = beta_mat * x_exps_mat;
      auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                         .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                         .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
      tmp_mat.device(*place) = prob / row_sum;

      for (size_t k = 1; k < seq_length; ++k) {
        T sum = 0.;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
                   alpha_mat(k - 1, i) * tmp_mat(k, j);
          }
        }
        sum = 1. / sum;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            trans_grad[(i + state_trans_base_idx) * tag_num + j] +=
                sum * w_exps[(i + state_trans_base_idx) * tag_num + j] *
                alpha_mat(k - 1, i) * tmp_mat(k, j);
          }
        }
        trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num +
                   label_value[k]] -= static_cast<T>(1.);
      }
    }
  };
C
caoying03 已提交
528 529 530 531
};

}  // namespace operators
}  // namespace paddle