Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
cca383cf
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
cca383cf
编写于
10月 27, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments.
上级
3afb9dc8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
295 addition
and
326 deletion
+295
-326
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+8
-316
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+287
-10
未找到文件。
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
cca383cf
...
...
@@ -17,26 +17,6 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
{
template
<
typename
T
>
T
NormalizeL1
(
T
*
x
,
size_t
len
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilities of all possible unfinished "
"sequences must be greater than 0."
);
T
s
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
*=
s
;
return
sum
;
}
}
// namespace
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
class
LinearChainCRFOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LinearChainCRFOpMaker
(
framework
::
OpProto
*
proto
,
...
...
@@ -206,145 +186,6 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
class
LinearChainCRFOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
emission_exps
=
ctx
.
Output
<
LoDTensor
>
(
"EmissionExps"
);
emission_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
transition_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Emission) is not a sequence."
);
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
size_t
level
=
0
;
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
batch_size
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
emission_weights
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
x_row_max
.
device
(
place
)
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
batch_size
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
x_exps
.
device
(
place
)
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
*
transition_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
*
transition_exps
);
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
{
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood
[
i
]
=
0.
;
continue
;
}
const
Tensor
one_seq
=
emission_weights
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
&
one_seq
,
&
one_seq_row_max
,
&
one_seq_exps
,
transition_weights
,
transition_exps
,
&
one_seq_label
,
&
one_seq_alpha
);
}
}
protected:
T
ForwardOneSequence
(
const
Tensor
*
emission
,
const
Tensor
*
emission_row_max
,
const
Tensor
*
emission_exps
,
const
Tensor
*
trans_weights
,
const
Tensor
*
trans_weight_exps
,
const
Tensor
*
label
,
Tensor
*
alpha
)
const
{
const
T
*
x
=
emission
->
data
<
T
>
();
const
T
*
x_row_max
=
emission_row_max
->
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
->
data
<
T
>
();
const
T
*
w
=
trans_weights
->
data
<
T
>
();
const
T
*
w_exps
=
trans_weight_exps
->
data
<
T
>
();
T
*
alpha_value
=
alpha
->
data
<
T
>
();
auto
x_dims
=
emission
->
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
// The 1st row of w are transition weights for start mask.
// The 2nd row of w are transition weights for end mask.
// Transition weights among other tags begin from the 3rd row of w.
const
size_t
state_trans_base_idx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
alpha_value
[
i
]
=
w_exps
[
i
]
*
x_exps
[
i
];
}
T
ll
=
-
x_row_max
[
0
]
-
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
,
tag_num
));
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
[
k
*
tag_num
+
i
]
*
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (*).
ll
-=
x_row_max
[
k
]
+
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
[
tag_num
+
i
];
}
ll
-=
std
::
log
(
sum
);
// Now ll is equal to -log(Z).
const
int
*
lbl
=
label
->
data
<
int
>
();
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
[
lbl
[
0
]]
/*start transition*/
+
x
[
lbl
[
0
]]
+
w
[
tag_num
+
lbl
[
seq_length
-
1
]]
/*end transition*/
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[(
lbl
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
lbl
[
k
]];
}
return
-
ll
;
}
};
class
LinearChainCRFGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -357,11 +198,6 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"LogLikelihood"
)),
"Input(LogLikelihood@GRAD) shoudl be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Emission"
)),
"Output(Emission@GRAD) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Transition"
)),
"Output(Transition@GRAD) should be not null."
);
auto
emission_exps_dims
=
ctx
->
GetInputDim
(
"EmissionExps"
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
.
size
(),
2UL
,
"The Input(EmissionExps) should be a 2-D tensor."
);
...
...
@@ -390,168 +226,24 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
"The height of Input(EmissionExps) and the height of Input(Label) "
"should be the same."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Emission"
),
emission_exps_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Emission"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Emission"
),
emission_exps_dims
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Transition"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
}
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad
// operator is determined by its input
"EmissionExps"
.
// operator is determined by its input
: graidents of LogLikelihood
.
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"LogLikelihood"
)
->
type
());
}
};
template
<
typename
T
>
class
LinearChainCRFGradOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
platform
::
CPUPlace
()),
"This kernel only runs on CPU."
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
LoDTensor
>
(
"Alpha"
);
const
T
*
ll_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
data
<
T
>
();
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
emission_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
if
(
trans_grad
)
trans_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
emission_dims
=
emission_exps
->
dims
();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting at
// position i.
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
label
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) is not a sequence."
);
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
continue
;
const
Tensor
one_seq_emission_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
ll_grad
[
i
],
&
one_seq_emission_exps
,
transition_exps
,
&
one_seq_alpha
,
&
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
}
}
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
Tensor
*
transition_grad
,
Tensor
*
emission_grad
)
const
{
const
T
*
w_exps
=
transition_exps
->
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
->
data
<
T
>
();
const
int
*
label_value
=
label
->
data
<
int
>
();
T
*
beta_value
=
beta
->
data
<
T
>
();
auto
x_dims
=
emission_exps
->
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backward vectors: beta.
// First, calculate the initialition state.
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
static_cast
<
int
>
(
seq_length
)
-
2
;
k
>=
0
;
--
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
]
*
beta_value
[(
k
+
1
)
*
tag_num
+
j
];
}
beta_value
[
k
*
tag_num
+
i
]
=
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (**).
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
*
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
prob
=
alpha_mat
*
beta_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
x_grad_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1.
);
}
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
tag_num
+
k
]
+=
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
}
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
// TODO(caoying): Fix this to avoid using this local variable.
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
platform
::
CPUPlace
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
prob
=
beta_mat
*
x_exps_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
tmp_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
// (**)
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
sum
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
trans_grad
[(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/operators/linear_chain_crf_op.h
浏览文件 @
cca383cf
...
...
@@ -19,6 +19,25 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
{
template
<
typename
T
>
T
NormalizeL1
(
T
*
x
,
size_t
len
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilities of all possible unfinished "
"sequences must be greater than 0."
);
T
s
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
*=
s
;
return
sum
;
}
}
// namespace
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
using
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
...
...
@@ -27,27 +46,285 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template
<
typename
Place
,
typename
T
>
class
LinearChainCRFOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
emission_exps
=
ctx
.
Output
<
LoDTensor
>
(
"EmissionExps"
);
emission_exps
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
transition_exps
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Emission) is not a sequence."
);
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
size_t
level
=
0
;
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
batch_size
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
ctx
.
GetPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
emission_weights
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
x_row_max
.
device
(
place
)
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
batch_size
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
x_exps
.
device
(
place
)
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
*
transition_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
*
transition_exps
);
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
{
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood
[
i
]
=
0.
;
continue
;
}
const
Tensor
one_seq
=
emission_weights
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
one_seq
,
one_seq_row_max
,
one_seq_exps
,
*
transition_weights
,
*
transition_exps
,
one_seq_label
,
&
one_seq_alpha
);
}
};
protected:
T
ForwardOneSequence
(
const
Tensor
*
emission
,
const
Tensor
*
emission_row_max
,
const
Tensor
*
emission_exps
,
const
Tensor
*
trans_weights
,
const
Tensor
*
trans_weight_exps
,
const
Tensor
*
label
,
Tensor
*
alpha
)
const
;
T
ForwardOneSequence
(
const
Tensor
&
emission
,
const
Tensor
&
emission_row_max
,
const
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
const
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
Tensor
*
alpha
)
const
{
const
T
*
x
=
emission
.
data
<
T
>
();
const
T
*
x_row_max
=
emission_row_max
.
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
.
data
<
T
>
();
const
T
*
w
=
trans_weights
.
data
<
T
>
();
const
T
*
w_exps
=
trans_weight_exps
.
data
<
T
>
();
T
*
alpha_value
=
alpha
->
data
<
T
>
();
auto
x_dims
=
emission
.
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
// The 1st row of w are transition weights for start mask.
// The 2nd row of w are transition weights for end mask.
// Transition weights between other tags begin from the 3rd row of w.
const
size_t
state_trans_base_idx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
alpha_value
[
i
]
=
w_exps
[
i
]
*
x_exps
[
i
];
}
T
ll
=
-
x_row_max
[
0
]
-
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
,
tag_num
));
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
[
k
*
tag_num
+
i
]
*
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (*).
ll
-=
x_row_max
[
k
]
+
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
[
tag_num
+
i
];
}
ll
-=
std
::
log
(
sum
);
// Now ll is equal to -log(Z).
const
int
*
lbl
=
label
.
data
<
int
>
();
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
[
lbl
[
0
]]
/*start transition*/
+
x
[
lbl
[
0
]]
+
w
[
tag_num
+
lbl
[
seq_length
-
1
]]
/*end transition*/
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[(
lbl
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
lbl
[
k
]];
}
return
-
ll
;
};
};
template
<
typename
Place
,
typename
T
>
class
LinearChainCRFGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
LoDTensor
>
(
"Alpha"
);
const
T
*
ll_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
data
<
T
>
();
auto
place
=
ctx
.
GetPlace
();
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
emission_grad
->
mutable_data
<
T
>
(
place
);
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
if
(
trans_grad
)
{
trans_grad
->
mutable_data
<
T
>
(
place
);
}
auto
emission_dims
=
emission_exps
->
dims
();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting at
// position i.
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
place
);
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
label
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) is not a sequence."
);
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
continue
;
const
Tensor
one_seq_emission_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
ll_grad
[
i
],
one_seq_emission_exps
,
*
transition_exps
,
one_seq_alpha
,
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
}
};
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
const
Tensor
&
emission_exps
,
const
Tensor
&
transition_exps
,
const
Tensor
&
alpha
,
const
Tensor
&
label
,
Tensor
*
beta
,
Tensor
*
transition_grad
,
Tensor
*
emission_grad
)
const
;
Tensor
*
emission_grad
)
const
{
const
T
*
w_exps
=
transition_exps
.
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
.
data
<
T
>
();
const
int
*
label_value
=
label
.
data
<
int
>
();
T
*
beta_value
=
beta
->
data
<
T
>
();
auto
x_dims
=
emission_exps
.
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backward vectors: beta.
// First, calculate the initialition state.
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
static_cast
<
int
>
(
seq_length
)
-
2
;
k
>=
0
;
--
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
]
*
beta_value
[(
k
+
1
)
*
tag_num
+
j
];
}
beta_value
[
k
*
tag_num
+
i
]
=
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (**).
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
prob
=
alpha_mat
*
beta_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
x_grad_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1.
);
}
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
tag_num
+
k
]
+=
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
}
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
emission_exps
);
// TODO(caoying): Fix this to avoid using this local variable.
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
ctx
.
GetPlace
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
prob
=
beta_mat
*
x_exps_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
tmp_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
// (**)
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
sum
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
trans_grad
[(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
}
}
};
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录