linear_chain_crf_op.h 13.0 KB
Newer Older
C
caoying03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

C
caoying03 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
namespace {
template <typename T>
T NormalizeL1(T* x, size_t len) {
  T sum = 0.;
  for (size_t i = 0; i < len; ++i) sum += x[i];
  // (This comment is from the old LinearChainCRFLayer.)
  // Right now, we just bet that sum won't be zero. If this really happens, we
  // will figure out what should be done then.
  PADDLE_ENFORCE(sum,
                 "The unnormalized probabilities of all possible unfinished "
                 "sequences must be greater than 0.");
  T s = 1. / sum;
  for (size_t i = 0; i < len; ++i) x[i] *= s;
  return sum;
}
}  // namespace

using framework::LoDTensor;
using framework::LoD;
41
using framework::Tensor;
C
caoying03 已提交
42 43 44 45
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

46
template <typename Place, typename T>
C
caoying03 已提交
47
class LinearChainCRFOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
48
 public:
C
caoying03 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* emission_weights = ctx.Input<LoDTensor>("Emission");
    auto* transition_weights = ctx.Input<Tensor>("Transition");
    auto* emission_exps = ctx.Output<LoDTensor>("EmissionExps");
    emission_exps->mutable_data<T>(ctx.GetPlace());
    auto* transition_exps = ctx.Output<Tensor>("TransitionExps");
    transition_exps->mutable_data<T>(ctx.GetPlace());
    auto* label = ctx.Input<LoDTensor>("Label");

    auto in_lod = emission_weights->lod();
    PADDLE_ENFORCE(in_lod.size(), "Input(Emission) is not a sequence.");

    // TODO(caoying) The checks related to LoD information should be
    // moved into InferShape once after the InferShape is refactored.
    PADDLE_ENFORCE_EQ(emission_weights->NumLevels(), 1UL,
                      "The Input(Emission) should be a sequence.");
    PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL,
                      "The Input(Label) should be a sequence.");
    const size_t level = 0;

    auto emission_dims = emission_weights->dims();
    const size_t batch_size = emission_dims[0];
    const size_t tag_num = emission_dims[1];
    const size_t seq_num = in_lod[level].size() - 1;

    Tensor emission_row_max;
    emission_row_max.mutable_data<T>(
        framework::make_ddim({static_cast<int>(batch_size), 1}),
        ctx.GetPlace());

    auto place = ctx.GetEigenDevice<Place>();
    auto x = EigenMatrix<T>::From(*emission_weights);
    auto x_row_max = EigenMatrix<T>::From(emission_row_max);
    x_row_max.device(place) =
        x.maximum(Eigen::DSizes<int, 1>(1))
            .reshape(Eigen::DSizes<int, 2>(int(batch_size), 1));

    auto x_exps = EigenMatrix<T>::From(*emission_exps);
    x_exps.device(place) =
        (x - x_row_max.broadcast(Eigen::DSizes<int, 2>(1, tag_num))).exp();

    auto w = EigenMatrix<T>::From(*transition_weights);
    auto w_exps = EigenMatrix<T>::From(*transition_exps);
    w_exps.device(place) = w.exp();

    auto* alpha = ctx.Output<LoDTensor>("Alpha");
    alpha->mutable_data<T>(ctx.GetPlace());
    auto* ll = ctx.Output<LoDTensor>("LogLikelihood");
    // resize the output tensor to the correct dimension.
    ll->Resize({static_cast<int>(seq_num), 1});
    T* log_likelihood = ll->mutable_data<T>(ctx.GetPlace());
    for (size_t i = 0; i < seq_num; ++i) {
      int start_pos = static_cast<int>(in_lod[level][i]);
      int end_pos = static_cast<int>(in_lod[level][i + 1]);
      if (end_pos == start_pos) {
        // If an empty input sequence is given, pad 0 for its cost.
        log_likelihood[i] = 0.;
        continue;
      }

      const Tensor one_seq = emission_weights->Slice(start_pos, end_pos);
      Tensor one_seq_row_max = emission_row_max.Slice(start_pos, end_pos);
      Tensor one_seq_exps = emission_exps->Slice(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice(start_pos, end_pos);
      Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);

      log_likelihood[i] = ForwardOneSequence(
          one_seq, one_seq_row_max, one_seq_exps, *transition_weights,
          *transition_exps, one_seq_label, &one_seq_alpha);
    }
  };
120 121

 protected:
C
caoying03 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  T ForwardOneSequence(const Tensor& emission, const Tensor& emission_row_max,
                       const Tensor& emission_exps, const Tensor& trans_weights,
                       const Tensor& trans_weight_exps, const Tensor& label,
                       Tensor* alpha) const {
    const T* x = emission.data<T>();
    const T* x_row_max = emission_row_max.data<T>();
    const T* x_exps = emission_exps.data<T>();
    const T* w = trans_weights.data<T>();
    const T* w_exps = trans_weight_exps.data<T>();
    T* alpha_value = alpha->data<T>();

    auto x_dims = emission.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    // The 1st row of w are transition weights for start mask.
    // The 2nd row of w are transition weights for end mask.
    // Transition weights between other tags begin from the 3rd row of w.
    const size_t state_trans_base_idx = 2;

    for (size_t i = 0; i < tag_num; ++i) {
      alpha_value[i] = w_exps[i] * x_exps[i];
    }
    T ll = -x_row_max[0] - std::log(NormalizeL1<T>(alpha_value, tag_num));

    for (size_t k = 1; k < seq_length; ++k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
          sum += alpha_value[(k - 1) * tag_num + j] *
                 w_exps[(j + state_trans_base_idx) * tag_num + i];
        }
        alpha_value[k * tag_num + i] = x_exps[k * tag_num + i] * sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (*).
      ll -= x_row_max[k] +
            std::log(NormalizeL1<T>(alpha_value + k * tag_num, tag_num));
    }
    T sum = 0.;
    for (size_t i = 0; i < tag_num; ++i) {
      sum += alpha_value[(seq_length - 1) * tag_num + i] * w_exps[tag_num + i];
    }
    ll -= std::log(sum);
    // Now ll is equal to -log(Z).

    const int* lbl = label.data<int>();
    PADDLE_ENFORCE_LT(
        *std::max_element(lbl, lbl + seq_length), tag_num,
        "An invalid tag label that execesses the largest tag number.");

    // Calculate the nominator part, which depends on the label sequence.
    ll += w[lbl[0]] /*start transition*/ + x[lbl[0]] +
          w[tag_num + lbl[seq_length - 1]] /*end transition*/;
    for (size_t k = 1; k < seq_length; ++k) {
      ll += x[k * tag_num + lbl[k]] +
            w[(lbl[k - 1] + state_trans_base_idx) * tag_num + lbl[k]];
    }
    return -ll;
  };
C
caoying03 已提交
180 181
};

182
template <typename Place, typename T>
C
caoying03 已提交
183
class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
C
caoying03 已提交
184
 public:
C
caoying03 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* label = ctx.Input<LoDTensor>("Label");
    auto* emission_exps = ctx.Input<LoDTensor>("EmissionExps");
    auto* transition_exps = ctx.Input<Tensor>("TransitionExps");
    auto* alpha = ctx.Input<LoDTensor>("Alpha");
    const T* ll_grad =
        ctx.Input<Tensor>(framework::GradVarName("LogLikelihood"))->data<T>();

    auto place = ctx.GetPlace();
    auto* emission_grad =
        ctx.Output<Tensor>(framework::GradVarName("Emission"));
    emission_grad->mutable_data<T>(place);

    auto* trans_grad = ctx.Output<Tensor>(framework::GradVarName("Transition"));
    if (trans_grad) {
      trans_grad->mutable_data<T>(place);
    }

    auto emission_dims = emission_exps->dims();

    // Beta is the memo table used in dynamic programming to calculate the
    // backwark vectors. For a backward vector i (the i-th row of beta), it
    // captures the unnormalized probabilities of partial sequences starting at
    // position i.
    Tensor beta;
    beta.mutable_data<T>(emission_dims, place);

    const size_t level = 0;  // currently, only support sequence.
    auto lod = label->lod();
    PADDLE_ENFORCE(lod.size(), "Input(Label) is not a sequence.");

    for (size_t i = 0; i < lod[level].size() - 1; ++i) {
      int start_pos = static_cast<int>(lod[level][i]);
      int end_pos = static_cast<int>(lod[level][i + 1]);
      if (end_pos == start_pos) continue;

      const Tensor one_seq_emission_exps =
          emission_exps->Slice(start_pos, end_pos);
      const Tensor one_seq_label = label->Slice(start_pos, end_pos);
      const Tensor one_seq_alpha = alpha->Slice(start_pos, end_pos);
      Tensor one_seq_beta = beta.Slice(start_pos, end_pos);
      Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos);

      BackwardOneSequence(ctx.device_context(), ll_grad[i],
                          one_seq_emission_exps, *transition_exps,
                          one_seq_alpha, one_seq_label, &one_seq_beta,
                          trans_grad, &one_seq_emission_grad);
    }
  };
C
caoying03 已提交
234 235

 protected:
C
caoying03 已提交
236
  void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad,
C
caoying03 已提交
237 238 239
                           const Tensor& emission_exps,
                           const Tensor& transition_exps, const Tensor& alpha,
                           const Tensor& label, Tensor* beta,
C
caoying03 已提交
240
                           Tensor* transition_grad,
C
caoying03 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
                           Tensor* emission_grad) const {
    const T* w_exps = transition_exps.data<T>();
    const T* x_exps = emission_exps.data<T>();
    const int* label_value = label.data<int>();
    T* beta_value = beta->data<T>();

    auto x_dims = emission_exps.dims();
    const size_t seq_length = x_dims[0];
    const size_t tag_num = x_dims[1];
    const size_t state_trans_base_idx = 2;

    // Calculate the backward vectors: beta.
    // First, calculate the initialition state.
    for (size_t i = 0; i < tag_num; ++i) {
      beta_value[(seq_length - 1) * tag_num + i] = w_exps[tag_num + i];
    }
    NormalizeL1<T>(beta_value + (seq_length - 1) * tag_num, tag_num);

    for (int k = static_cast<int>(seq_length) - 2; k >= 0; --k) {
      for (size_t i = 0; i < tag_num; ++i) {
        T sum = 0.;
        for (size_t j = 0; j < tag_num; ++j) {
          sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *
                 x_exps[(k + 1) * tag_num + j] *
                 beta_value[(k + 1) * tag_num + j];
        }
        beta_value[k * tag_num + i] = sum;
      }
      // NormalizeL1 is to avoid underflow or overflow at (**).
      NormalizeL1<T>(beta_value + k * tag_num, tag_num);
    }

    auto alpha_mat = EigenMatrix<T>::From(alpha);
    auto beta_mat = EigenMatrix<T>::From(*beta);
    auto x_grad_mat = EigenMatrix<T>::From(*emission_grad);
    auto* place = ctx.GetEigenDevice<Place>();
    auto prob = alpha_mat * beta_mat;
    auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                       .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                       .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
    x_grad_mat.device(*place) = prob / row_sum;

    for (size_t k = 0; k < seq_length; ++k) {
      x_grad_mat(k, label_value[k]) -= static_cast<T>(1.);
    }

    if (transition_grad) {
      T* trans_grad = transition_grad->data<T>();
      for (size_t k = 0; k < tag_num; ++k) {
        trans_grad[k] += x_grad_mat(/*from start state*/ 0, k);
        trans_grad[tag_num + k] +=
            x_grad_mat(/*to end state*/ seq_length - 1, k);
      }

      auto x_exps_mat = EigenMatrix<T>::From(emission_exps);

      // TODO(caoying): Fix this to avoid using this local variable.
      Tensor tmp;
      tmp.mutable_data<T>(beta->dims(), ctx.GetPlace());
      auto tmp_mat = EigenMatrix<T>::From(tmp);
      auto prob = beta_mat * x_exps_mat;
      auto row_sum = prob.sum(Eigen::DSizes<int, 1>(1))
                         .reshape(Eigen::DSizes<int, 2>(seq_length, 1))
                         .broadcast(Eigen::DSizes<int, 2>(1, tag_num));
      tmp_mat.device(*place) = prob / row_sum;

      for (size_t k = 1; k < seq_length; ++k) {
        T sum = 0.;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            sum += w_exps[(i + state_trans_base_idx) * tag_num + j] *  // (**)
                   alpha_mat(k - 1, i) * tmp_mat(k, j);
          }
        }
        sum = 1. / sum;
        for (size_t i = 0; i < tag_num; ++i) {
          for (size_t j = 0; j < tag_num; ++j) {
            trans_grad[(i + state_trans_base_idx) * tag_num + j] +=
                sum * w_exps[(i + state_trans_base_idx) * tag_num + j] *
                alpha_mat(k - 1, i) * tmp_mat(k, j);
          }
        }
        trans_grad[(label_value[k - 1] + state_trans_base_idx) * tag_num +
                   label_value[k]] -= static_cast<T>(1.);
      }
    }
  };
C
caoying03 已提交
328 329 330 331
};

}  // namespace operators
}  // namespace paddle