mkldnn_reuse.h 48.4 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <algorithm>
17
#include <memory>
18
#include <sstream>
J
Jacek Czaja 已提交
19
#include <string>
20
#include <utility>
J
Jacek Czaja 已提交
21
#include <vector>
22

X
xiaoli.liu@intel.com 已提交
23
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
26 27 28 29 30 31
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

32 33
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
34
using user_function = std::function<std::shared_ptr<float>(const float*)>;
35
using memory = dnnl::memory;
J
Jacek Czaja 已提交
36

37 38
template <typename T,
          typename TForward,
39 40 41 42
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
class MKLDNNHandlerNoCachingT {
 public:
43
  MKLDNNHandlerNoCachingT(dnnl::engine engine, platform::Place cpu_place)
44 45 46 47 48 49 50 51 52 53 54 55 56 57
      : engine_(engine), place_(cpu_place), fwd_pd_(nullptr), bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }

  std::shared_ptr<TForward> AcquireForwardPrimitive() {
    return std::make_shared<TForward>(*fwd_pd_);
  }

  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
    return std::make_shared<TBackward>(*bwd_pd_);
  }

  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    PADDLE_ENFORCE_NOT_NULL(
58 59 60
        bwd_w_pd_,
        platform::errors::Unavailable("BWD_PD should be set when "
                                      "getting BWD prim ."));
61 62 63
    return std::make_shared<TBackward_params>(*bwd_w_pd_);
  }

64
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
65 66 67 68 69 70 71
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_desc(),
                                            to_void_cast<T>(input_data));
  }

  template <typename T_out = T>
72
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
73 74 75 76 77 78
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr);
  }

  template <typename T_out = T>
79
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
80 81 82 83
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc());
  }

  template <typename T_out = T>
84
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
85 86 87 88 89 90
      const framework::Tensor* output) {
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data));
  }

91
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
92 93 94 95 96 97
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_desc(),
                                            to_void_cast<T>(ptr));
  }

98
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
99 100 101 102 103 104 105
      framework::Tensor* diffsrc) {
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr);
  }

  // Buffer of given Tensor is used for oneDNN computation
106
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
107 108 109 110 111 112 113 114 115 116 117 118
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            ptr);
  }

  // Buffer is allocated by oneDNN to store computation results
119
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
            "BWD_W_PD should be set when getting BWD grad of weights."));
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc());
  }

 protected:
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
    CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
  }

  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
    bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

  template <typename... Args>
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
    // fwd_pd_ is set during grad by calling
    // AcquireForwardPrimitiveDescriptor
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_,
                            platform::errors::Unavailable(
                                "Get MKLDNN Forward primitive %s failed."));
    auto bwd_desc =
        typename TBackward_params::desc(std::forward<Args>(args)...);
    bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
        bwd_desc, engine_, *fwd_pd_);
  }

183 184 185
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
186 187
  }

188 189 190
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md) {
    return std::make_shared<dnnl::memory>(md, engine_);
191 192
  }

193 194
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
195
    auto reorder_p =
196
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
197 198 199 200

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
201
                                         platform::TracerEventType::UserDefined,
202 203 204 205 206
                                         2,
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
207 208 209 210
    astream.wait();
  }

  template <typename F = T>
211
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
212 213 214 215
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      bool is_persistent = false,
216
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {}) {
217
    std::shared_ptr<dnnl::memory> target_memory_p;
218 219 220 221 222 223 224
    if (custom_reorder_func) {
      auto reordered_data =
          custom_reorder_func(reinterpret_cast<const F*>(ptr));
      ptr = reinterpret_cast<void*>(reordered_data.get());
    }
    auto user_memory_p = std::make_shared<dnnl::memory>(user_md, engine_, ptr);
    if (user_md != target_md) {
225
      target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
226 227 228 229
      auto reorder_p =
          std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);

      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
230
      platform::RecordEvent record_reorder(
231 232 233
          "int_reorder",
          platform::TracerEventType::UserDefined,
          2,
C
chenjian 已提交
234
          platform::EventRole::kUniqueOp);
235 236 237
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
238 239 240 241 242 243 244
      astream.wait();
    } else {
      target_memory_p = user_memory_p;
    }
    return target_memory_p;
  }

245
  dnnl::engine engine_;
246 247 248 249 250 251
  platform::Place place_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
};

252 253
template <typename T,
          typename TForward,
254 255
          typename TBackward = mkldnn_dummy_primitive,
          typename TBackward_params = mkldnn_dummy_primitive>
256 257
class MKLDNNHandlerT {
 public:
258 259 260 261
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx,
                 dnnl::engine engine,
                 platform::Place cpu_place,
                 const std::string& base_key)
262 263 264 265
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
266
        key_(platform::ExtendKeyWithThreadInfoIfNeeded(dev_ctx, base_key)),
267
        fwd_pd_(nullptr),
268 269 270
        bwd_pd_(nullptr) {
    platform::MKLDNNDeviceContext::tls().log_lib_version();
  }
271

A
Adam 已提交
272
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
273
    const std::string key_p = key_ + "@fwd_p";
274 275 276
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
277
      forward_p = std::make_shared<TForward>(*fwd_pd_);
278 279 280 281 282
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
283
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
284
    const std::string key_p = key_ + "@bwd_p";
285 286 287
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
288
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
289 290 291 292 293
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

294 295 296 297 298
  std::shared_ptr<TBackward_params> AcquireBackwardWeightsPrimitive() {
    const std::string key_p = key_ + "@bwd_w_p";
    auto backward_p =
        std::static_pointer_cast<TBackward_params>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
299 300 301 302 303
      PADDLE_ENFORCE_NOT_NULL(
          bwd_w_pd_,
          platform::errors::Unavailable("BWD_PD should be set when "
                                        "getting BWD prim witk key: %s .",
                                        key_p));
304 305 306 307 308 309
      backward_p = std::make_shared<TBackward_params>(*bwd_w_pd_);
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

310
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(
311 312
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
313 314
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
315 316
  }

317
  template <typename T_out = T>
318
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output) {
319 320
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
321 322
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->dst_desc(), ptr, "@dst_mem_p");
323 324
  }

325
  template <typename T_out = T>
326
  std::shared_ptr<dnnl::memory> AcquireDstMemory(void) {
327 328 329
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), "@dstt_mem_p");
  }

330
  template <typename T_out = T>
331
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
332
      const framework::Tensor* output) {
333 334 335 336
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
337 338
  }

339
  std::shared_ptr<dnnl::memory> AcquireDiffDstMemory(
340 341
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
342 343
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
344 345
  }

346
  std::shared_ptr<dnnl::memory> AcquireDiffSrcMemory(
347
      framework::Tensor* diffsrc) {
A
Adam 已提交
348 349
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
350 351
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_src_desc(), ptr, "@diff_src_mem_p");
352 353
  }

354
  // Buffer of given Tensor is used for oneDNN computation
355
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(
356 357 358 359
      framework::Tensor* diff_weights) {
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
360
            "BWD_W_PD should be set when getting BWD grad of weights."));
361 362
    T* ptr = diff_weights->mutable_data<T>(
        place_, bwd_w_pd_->diff_weights_desc().get_size());
363 364
    return this->AcquireMemoryFromPrimitive(
        bwd_w_pd_->diff_weights_desc(), ptr, "@diff_wei_mem_p");
365 366 367
  }

  // Buffer is allocated by oneDNN to store computation results
368
  std::shared_ptr<dnnl::memory> AcquireDiffWeightsMemory(void) {
369 370 371
    PADDLE_ENFORCE_NOT_NULL(
        bwd_w_pd_,
        platform::errors::Unavailable(
372
            "BWD_W_PD should be set when getting BWD grad of weights."));
373 374 375 376
    return this->AcquireMemoryFromPrimitive(bwd_w_pd_->diff_weights_desc(),
                                            "@diff_wei_mem_p");
  }

377
 protected:
378
  bool isCached() {
379 380 381 382 383 384 385
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

    return (fwd_pd_ != nullptr);
  }

386
  bool isBwdCached() {
387
    const std::string key_pd = key_ + "@bwd_pd";
388 389 390
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));

391 392 393
    if (bwd_pd_ == nullptr) {
      return false;
    } else {
394 395 396 397 398 399 400 401
      if (std::is_same<TBackward_params, mkldnn_dummy_primitive>::value ==
          false) {
        const std::string key_bw_w_pd = key_ + "@bwd_w_pd";
        bwd_w_pd_ =
            std::static_pointer_cast<typename TBackward_params::primitive_desc>(
                dev_ctx_.GetBlob(key_bw_w_pd));
      }

402 403 404 405 406
      // When BWD is cached then still we need to Get FWD PD
      const std::string key_fpd = key_ + "@fwd_pd";
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_fpd));
      PADDLE_ENFORCE_NOT_NULL(
407 408 409
          fwd_pd_,
          platform::errors::Unavailable(
              "Error: FWD PD should be set when BWD PD is cached."));
410 411
      return true;
    }
412 413
  }

414 415 416 417 418 419
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
420 421 422 423 424 425 426 427 428 429 430
    // This is used when we can recreate FWD PD in BWD so
    // we do not need to pass FWD to BWD
    const std::string key_pd = key_ + "@fwd_pd";
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      CreateForwardPrimitiveDescriptor(first_arg, std::forward<Args>(args)...);
      dev_ctx_.SetBlob(key_pd, fwd_pd_);
    }
  }

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

452 453
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
454
    // fwd_pd_ is set during grad by calling
455
    // AcquireForwardPrimitiveDescriptor
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_pd";
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

471
  template <typename... Args>
472
  void AcquireBackwardWeightsPrimitiveDescriptor(Args&&... args) {
473
    // fwd_pd_ is set during grad by calling
474
    // AcquireForwardPrimitiveDescriptor
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_,
        platform::errors::Unavailable("Get MKLDNN Forward primitive %s failed.",
                                      key_ + "@fwd_pd"));
    const std::string key_pd = key_ + "@bwd_w_pd";
    bwd_w_pd_ =
        std::static_pointer_cast<typename TBackward_params::primitive_desc>(
            dev_ctx_.GetBlob(key_pd));
    if (bwd_w_pd_ == nullptr) {
      auto bwd_desc =
          typename TBackward_params::desc(std::forward<Args>(args)...);
      bwd_w_pd_ = std::make_shared<typename TBackward_params::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_w_pd_);
    }
  }

492
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
493
      const std::string& suffix) {
494
    return std::static_pointer_cast<dnnl::memory>(
495 496 497
        dev_ctx_.GetBlob(key_ + suffix));
  }

498 499
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, void* ptr, const std::string& suffix) {
500
    const auto local_key = key_ + suffix;
501
    auto mem_p =
502
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
503
    if (mem_p == nullptr) {
504
      mem_p = std::make_shared<dnnl::memory>(md, engine_, ptr);
505 506 507 508 509 510 511
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

512 513
  std::shared_ptr<dnnl::memory> AcquireMemoryFromPrimitive(
      dnnl::memory::desc md, const std::string& suffix) {
514 515
    const auto local_key = key_ + suffix;
    auto mem_p =
516
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
517
    if (mem_p == nullptr) {
518
      mem_p = std::make_shared<dnnl::memory>(md, engine_);
519 520 521 522 523
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

524 525
  void AcquireReorder(const std::shared_ptr<dnnl::memory>& user_memory_p,
                      const std::shared_ptr<dnnl::memory>& target_memory_p) {
526
    auto reorder_p =
527
        std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
528

529
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
530 531

    platform::RecordEvent record_reorder("int_reorder",
C
chenjian 已提交
532
                                         platform::TracerEventType::UserDefined,
533 534 535 536 537
                                         2,
                                         platform::EventRole::kUniqueOp);
    reorder_p->execute(
        astream,
        {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
538 539 540
    astream.wait();
  }

541
  template <typename F = T>
542
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorder(
543 544 545 546 547
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const std::string& suffix,
      bool is_persistent = false,
A
Adam Osewski 已提交
548
      std::function<std::shared_ptr<F>(const F*)> custom_reorder_func = {},
549 550
      const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
551 552 553 554 555 556 557 558
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
559 560 561 562 563 564
      if (custom_reorder_func) {
        auto reordered_data =
            custom_reorder_func(reinterpret_cast<const F*>(ptr));
        dev_ctx_.SetBlob(key_reorder_p + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }
565 566 567
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
568
        target_memory_p = std::make_shared<dnnl::memory>(target_md, engine_);
A
Adam Osewski 已提交
569 570 571 572
        dnnl::reorder::primitive_desc reorder_pdesc;
        if (is_int8<T>()) {
          dnnl::primitive_attr attr;
          attr.set_output_scales(mask, scale_data);
573 574
          reorder_pdesc = dnnl::reorder::primitive_desc(
              *user_memory_p, *target_memory_p, attr);
A
Adam Osewski 已提交
575 576 577 578 579
        } else {
          reorder_pdesc =
              dnnl::reorder::primitive_desc(*user_memory_p, *target_memory_p);
        }
        auto reorder_p = std::make_shared<dnnl::reorder>(reorder_pdesc);
580 581
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

582
        auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
C
chenjian 已提交
583
        platform::RecordEvent record_reorder(
584 585 586
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
C
chenjian 已提交
587
            platform::EventRole::kUniqueOp);
588 589 590
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
591 592 593 594 595 596 597
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
598
      auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
599 600 601 602 603

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

604 605
      // TODO(jczaja): Here we detect if reorder is cached it means it is needed
      // need to change this to get rid of keys
606
      auto reorder_p = std::static_pointer_cast<dnnl::reorder>(
607 608
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
C
chenjian 已提交
609
        platform::RecordEvent record_reorder(
610 611 612
            "int_reorder",
            platform::TracerEventType::UserDefined,
            2,
C
chenjian 已提交
613
            platform::EventRole::kUniqueOp);
614 615 616
        reorder_p->execute(
            astream,
            {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
617 618 619 620 621 622
        astream.wait();
      }
    }
    return target_memory_p;
  }

623
  std::shared_ptr<dnnl::memory> AcquireMemory(const std::string& suffix) {
624
    const auto local_key = key_ + suffix;
625
    return std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(local_key));
626 627
  }

628
  const MKLDNNDeviceContext& dev_ctx_;
629
  dnnl::engine engine_;
630 631
  platform::Place place_;
  std::string key_common_;
632
  std::string key_;
633 634
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
635
  std::shared_ptr<typename TBackward_params::primitive_desc> bwd_w_pd_;
636 637
};

638
template <typename T>
639 640
class BinaryMKLDNNHandler
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
641
 public:
642 643 644 645 646 647 648 649 650 651
  BinaryMKLDNNHandler(const dnnl::algorithm algo,
                      const int axis,
                      const dnnl::engine engine,
                      platform::Place cpu_place,
                      const Tensor* x,
                      const Tensor* y,
                      Tensor* out,
                      float scale_x,
                      float scale_y,
                      float scale_out,
652
                      const dnnl::post_ops& post_ops = dnnl::post_ops{})
653
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
654 655
    const auto src_x_tz = phi::vectorize(x->dims());
    const auto src_y_tz = phi::vectorize(y->dims());
656 657 658
    // if output tensor(z) is nullptr then we are computing into oneDNN
    // managed buffer
    auto rankdiff = x->dims().size() - y->dims().size();
659 660
    const auto dst_tz = (out == nullptr) ? (rankdiff > 0 ? src_x_tz : src_y_tz)
                                         : phi::vectorize(out->dims());
661

662 663
    auto src0_md = x->mem_desc();
    auto src1_md = y->mem_desc();
664 665 666
    if (rankdiff > 0) {  // Second input is of smaller rank than first
      std::vector<int64_t> dims1_ex(rankdiff, 1);
      dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
667 668
                      src_y_tz.begin(),
                      src_y_tz.end());
J
Jacek Czaja 已提交
669 670 671 672 673
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims1_ex.begin() + 1, dims1_ex.end() - 1, dims1_ex.end());
      }
674 675 676 677
      src1_md = src1_md.reshape(dims1_ex);
    } else if (rankdiff < 0) {  // First input is of smaller than second
      std::vector<int64_t> dims0_ex(-rankdiff, 1);
      dims0_ex.insert(next(dims0_ex.begin(), (axis == -1 ? -rankdiff : axis)),
678 679
                      src_x_tz.begin(),
                      src_x_tz.end());
J
Jacek Czaja 已提交
680 681 682 683 684
      // For broadcasting for NHWC we need rotate extended shape
      if (MKLDNNDeviceContext::tls().get_cur_paddle_data_layout() ==
          framework::DataLayout::kNHWC) {
        std::rotate(dims0_ex.begin() + 1, dims0_ex.end() - 1, dims0_ex.end());
      }
685
      src0_md = src0_md.reshape(dims0_ex);
686
    }
687 688
    const auto dst_md = memory::desc(
        dst_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);
689

690
    auto attributes =
691
        CreateAttributes(algo, scale_x, scale_y, scale_out, post_ops);
692

693 694 695 696 697 698 699
    if (x->numel() < y->numel()) {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src1_md, src0_md, dst_md);
    } else {
      this->AcquireForwardPrimitiveDescriptor(
          attributes, algo, src0_md, src1_md, dst_md);
    }
700
  }
701
  std::shared_ptr<dnnl::memory> AcquireSecondSrcMemory(
702 703
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
704 705
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src1_desc(),
                                            to_void_cast<T>(input_data));
706
  }
707 708

 private:
709
  static inline dnnl::primitive_attr CreateAttributes(
710 711 712 713
      dnnl::algorithm op,
      float scale_x,
      float scale_y,
      float scale_out,
714
      dnnl::post_ops post_ops = dnnl::post_ops{}) {
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
731
    float scale_0 = scale_out / scale_x;
732
    float scale_1 =
733
        op == dnnl::algorithm::binary_add ? scale_out / scale_y : 1.0 / scale_y;
734
    dnnl::primitive_attr attributes;
735 736 737 738
    attributes.set_scales(
        /* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0, {scale_0});
    attributes.set_scales(
        /* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0, {scale_1});
739
    if (post_ops.len() > 0) attributes.set_post_ops(post_ops);
740 741
    return attributes;
  }
742 743
};

744 745
template <typename T>
class BroadcastDataMKLDNNHandler
746
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::binary> {
747 748
 public:
  BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
749
                             const dnnl::engine engine,
750 751 752 753 754
                             platform::Place cpu_place,
                             const Tensor* x,
                             Tensor* out,
                             float scale_x,
                             float scale_y,
755
                             const std::vector<int64_t>& extended_x_dims)
756
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::binary>(engine, cpu_place) {
757
    const auto src0_tz = phi::vectorize(out->dims());
758
    const auto src0_md =
759 760
        dnnl::memory::desc(src0_tz,
                           platform::MKLDNNGetDataType<T>(),
761
                           platform::GetPlainMKLDNNFormat(src0_tz.size()));
762
    const auto src1_md = x->mem_desc().reshape(extended_x_dims);
763 764 765 766 767

    dnnl::primitive_attr attributes;
    attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
    attributes.set_scales(DNNL_ARG_SRC_1, 0, {scale_y});

768 769
    this->AcquireForwardPrimitiveDescriptor(
        attributes, algo, src0_md, src1_md, src0_md);
770 771
  }

772
  template <typename T_out = T>
773 774 775
  std::shared_ptr<dnnl::memory> AcquireZeroedDstMemory(framework::Tensor* out) {
    T_out* ptr = out->mutable_data<T_out>(this->place_,
                                          this->fwd_pd_->dst_desc().get_size());
776
    memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
777
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
778 779 780
  }
};

781 782
template <typename T>
class ReductionMKLDNNHandler
783
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction> {
784
 public:
785 786 787 788 789 790 791 792
  ReductionMKLDNNHandler(const dnnl::algorithm algo,
                         const float p,
                         const float eps,
                         const dnnl::engine engine,
                         platform::Place cpu_place,
                         const Tensor* x,
                         const Tensor* out,
                         std::vector<int64_t> out_tz,
793
                         const dnnl::primitive_attr& attrs = NULL)
794 795
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::reduction>(engine,
                                                              cpu_place) {
796 797
    const auto out_md = memory::desc(out_tz,
                                     platform::MKLDNNGetDataType<T>(),
798
                                     dnnl::memory::format_tag::any);
799

800
    if (attrs)
801 802
      this->AcquireForwardPrimitiveDescriptor(
          attrs, algo, x->mem_desc(), out_md, p, eps);
803
    else
804 805
      this->AcquireForwardPrimitiveDescriptor(
          algo, x->mem_desc(), out_md, p, eps);
806 807 808
  }
};

809 810 811 812 813 814
template <typename T>
class MatMulV2MKLDNNHandler
    : public paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul> {
 public:
  MatMulV2MKLDNNHandler(const dnnl::engine engine,
                        paddle::platform::Place cpu_place,
815 816 817 818
                        const std::vector<int64_t>& x_org_dims,
                        bool trans_x,
                        const std::vector<int64_t>& y_org_dims,
                        bool trans_y,
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
                        bool is_output_fused,
                        const std::vector<int64_t>& x_strides_override,
                        const std::vector<int64_t>& y_strides_override)
      : paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul>(engine,
                                                                   cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!x_strides_override.empty()) {
      x_strides = x_strides_override;
    } else {
      if (!trans_x) {
        x_strides.insert(x_strides.end(), {M * K, K, 1});
      } else {
        x_strides.insert(x_strides.end(), {M * K, 1, M});
      }
    }

    if (!y_strides_override.empty()) {
      y_strides = y_strides_override;
    } else {
      if (!trans_y) {
        y_strides.insert(y_strides.end(), {N * K, N, 1});
      } else {
        y_strides.insert(y_strides.end(), {N * K, 1, K});
      }
    }

    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});

    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      if (x_strides_override.empty()) {
        x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      }
      if (y_strides_override.empty()) {
        y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      }
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }

    if (is_output_fused) {
      out_strides = FakeTransposeStrides(out_ddims);
    }

    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<T>(), out_strides);

    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
  }

  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<T>(input_data));
  }
};

919
template <typename T>
920
class ActivationMKLDNNHandler
921 922
    : public MKLDNNHandlerNoCachingT<T,
                                     dnnl::eltwise_forward,
923
                                     dnnl::eltwise_backward> {
924
 public:
925
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
926
                          const framework::ExecutionContext& ctx,
927 928
                          const dnnl::engine engine,
                          Place cpu_place,
929
                          const framework::Tensor* x)
930 931
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::eltwise_forward,
932 933
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
934 935
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;
936 937

    if (ctx.Type() == "scale") {
938 939
      bool bias_after_scale = ctx.Attr<bool>("bias_after_scale");
      auto* scale_tensor = ctx.Input<Tensor>("ScaleTensor");
940 941 942
      alpha = (scale_tensor == nullptr)
                  ? ctx.Attr<float>("scale")
                  : static_cast<float>(*(scale_tensor->data<T>()));
943 944 945 946 947
      beta = ctx.Attr<float>("bias");
      // if bias_after_scale == true
      //   out = scale*X + bias
      // else
      //   out = scale*(X + bias) = scale*X + scale*bias
948 949 950 951 952 953 954 955
      if (!bias_after_scale) {
        beta *= alpha;
      }
    } else if (ctx.Type() == "clip") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
956 957
    } else {
      // paddle uses beta but mkldnn uses alpha for swish
958
      if (algorithm == dnnl::algorithm::eltwise_swish) {
959 960 961
        std::swap(alpha, beta);
      } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
        alpha = ctx.Attr<float>("threshold");
962
      }
963
    }
964

965
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
966 967 968
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
969
                                            beta);
970 971
  }

972
  ActivationMKLDNNHandler(dnnl::algorithm algorithm,
973
                          const framework::ExecutionContext& ctx,
974 975 976 977 978 979
                          const dnnl::engine engine,
                          Place cpu_place,
                          const framework::Tensor* x,
                          const Tensor* dout)
      : platform::MKLDNNHandlerNoCachingT<T,
                                          dnnl::eltwise_forward,
980 981
                                          dnnl::eltwise_backward>(engine,
                                                                  cpu_place) {
982 983 984 985
    float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 0;
    float beta = ctx.HasAttr("beta") ? ctx.Attr<float>("beta") : 0;

    // paddle uses beta but mkldnn uses alpha for swish
986
    if (algorithm == dnnl::algorithm::eltwise_swish) {
987 988 989 990
      std::swap(alpha, beta);
    } else if (algorithm == dnnl::algorithm::eltwise_bounded_relu) {
      alpha = ctx.Attr<float>("threshold");
    }
991

992 993 994 995 996 997 998
    if (ctx.Type() == "clip_grad") {
      alpha = ctx.HasInput("Min") ? ctx.Input<Tensor>("Min")->data<float>()[0]
                                  : ctx.Attr<float>("min");
      beta = ctx.HasInput("Max") ? ctx.Input<Tensor>("Max")->data<float>()[0]
                                 : ctx.Attr<float>("max");
    }

999
    this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training,
1000 1001 1002
                                            algorithm,
                                            x->mem_desc(),
                                            alpha,
1003
                                            beta);
1004 1005
    this->AcquireBackwardPrimitiveDescriptor(
        algorithm, dout->mem_desc(), x->mem_desc(), alpha, beta);
1006
  }
1007

1008
  std::shared_ptr<dnnl::memory> AcquireBackwardSrcMemory(
1009 1010
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
1011
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
1012
                                            to_void_cast<T>(input_data));
1013 1014 1015
  }
};

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static void AppendActivation(const framework::ExecutionContext& ctx,
                             dnnl::post_ops& post_ops,
                             float activation_scale = 1.0f) {
  const auto invalid_attribute =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation").empty()
          : true;
  if (invalid_attribute) return;

  const auto fuse_activation = ctx.Attr<std::string>("fuse_activation");
  const auto fuse_alpha =
      ctx.HasAttr("fuse_alpha") ? ctx.Attr<float>("fuse_alpha") : 0.0f;
  const auto fuse_beta =
      ctx.HasAttr("fuse_beta") ? ctx.Attr<float>("fuse_beta") : 0.0f;

  if (fuse_activation == "hard_sigmoid") {
    post_ops.append_eltwise(activation_scale,
                            dnnl::algorithm::eltwise_linear,
                            fuse_alpha,
                            fuse_beta);
    post_ops.append_eltwise(
        activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
  } else {
    const std::unordered_map<std::string, dnnl::algorithm> activation_map = {
        {"abs", dnnl::algorithm::eltwise_abs},
        {"clip", dnnl::algorithm::eltwise_clip},
        {"gelu", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf},
        {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh},
        {"hard_swish", dnnl::algorithm::eltwise_hardswish},
        {"leaky_relu", dnnl::algorithm::eltwise_relu},
        {"mish", dnnl::algorithm::eltwise_mish},
        {"relu", dnnl::algorithm::eltwise_relu},
        {"relu6", dnnl::algorithm::eltwise_bounded_relu},
        {"sigmoid", dnnl::algorithm::eltwise_logistic},
        {"sqrt", dnnl::algorithm::eltwise_sqrt},
        {"swish", dnnl::algorithm::eltwise_swish},
        {"tanh", dnnl::algorithm::eltwise_tanh}};

    const auto& activation_type = activation_map.find(fuse_activation);

    PADDLE_ENFORCE_NE(
        activation_type,
        activation_map.end(),
        platform::errors::InvalidArgument(
            "Activation '%s' not found in oneDNN algorithms mapper",
            fuse_activation));

    post_ops.append_eltwise(
        activation_scale, activation_type->second, fuse_alpha, fuse_beta);
  }
}

static std::unordered_map<std::string, std::string> GetAttributeMap(
    std::string act_type) {
  std::unordered_map<std::string, std::string> attr_map;
  if (act_type == "swish")
    attr_map.emplace("beta", "fuse_alpha");
  else if (act_type == "relu6")
    attr_map.emplace("threshold", "fuse_alpha");
  else if (act_type == "hard_sigmoid") {
    attr_map.emplace("slope", "fuse_alpha");
    attr_map.emplace("offset", "fuse_beta");
  } else if (act_type == "clip") {
    attr_map.emplace("min", "fuse_alpha");
    attr_map.emplace("max", "fuse_beta");
  } else {
    attr_map.emplace("alpha", "fuse_alpha");
    attr_map.emplace("beta", "fuse_beta");
  }
  return attr_map;
}

static std::vector<std::string> GetSupportedActivations() {
  return std::vector<std::string>{"abs",
                                  "clip",
                                  "gelu",
                                  "hard_sigmoid",
                                  "hard_swish",
                                  "leaky_relu",
                                  "mish",
                                  "relu",
                                  "relu6",
                                  "sigmoid",
                                  "sqrt",
                                  "swish",
                                  "tanh"};
1103 1104
}

1105
class ReorderMKLDNNHandler {
1106
 public:
A
Adam 已提交
1107
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1108
                       framework::proto::VarType::Type vtype,
1109 1110
                       dnnl::memory::data_type dtype,
                       dnnl::engine engine)
1111
      : dims_(dims),
1112
        vtype_(vtype),
1113 1114
        vtype_dst_(vtype),
        dtype_(dtype),
1115 1116
        dtype_dst_(dtype),
        engine_(engine) {}
1117 1118 1119

  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                       framework::proto::VarType::Type vtype,
1120
                       dnnl::memory::data_type dtype,
1121
                       framework::proto::VarType::Type vtype_dst,
1122 1123
                       dnnl::memory::data_type dtype_dst,
                       dnnl::engine engine)
1124
      : dims_(dims),
1125 1126 1127
        vtype_(vtype),
        vtype_dst_(vtype_dst),
        dtype_(dtype),
1128 1129
        dtype_dst_(dtype_dst),
        engine_(engine) {}
1130

1131 1132 1133 1134 1135
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const dnnl::memory::desc& md,
                                                 void* ptr) {
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
  }

1136 1137 1138 1139
  std::shared_ptr<dnnl::memory> AcquireSrcMemory(const MKLDNNMemoryFormat& fmt,
                                                 void* ptr) {
    auto md = dnnl::memory::desc(dims_, dtype_, fmt);
    return std::make_shared<dnnl::memory>(md, engine_, ptr);
1140 1141
  }

1142
  std::shared_ptr<dnnl::memory> AcquireSubmemory(
1143 1144
      const std::vector<int64_t>& dims,
      const std::vector<int64_t>& offset,
1145
      const std::shared_ptr<dnnl::memory>& mem_p) {
1146
    auto sub_md = mem_p->get_desc().submemory_desc(dims, {offset});
1147 1148
    auto sub_mem_p = std::make_shared<dnnl::memory>(
        sub_md, engine_, mem_p->get_data_handle());
1149 1150 1151
    return sub_mem_p;
  }

1152 1153 1154
  std::shared_ptr<dnnl::memory> AcquireDstMemory(framework::Tensor* output,
                                                 const MKLDNNMemoryFormat& fmt,
                                                 platform::Place place) {
1155
    auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_dst_, fmt);
1156
    auto dst_data = output->mutable_data(
1157
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
1158
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1159 1160
  }

1161
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
1162 1163
      framework::Tensor* output,
      const dnnl::memory::desc& src_md,
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
      platform::Place place) {
    if (vtype_dst_ == vtype_) {
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), src_md.get_size());
      return std::make_shared<dnnl::memory>(src_md, engine_, dst_data);
    } else {
      auto dst_md = src_md;
      dst_md.data.data_type = static_cast<dnnl_data_type_t>(dtype_dst_);
      auto dst_data = output->mutable_data(
          place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
      return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
    }
  }

1178
  std::shared_ptr<dnnl::memory> AcquireDstMemory(
1179 1180 1181 1182
      framework::Tensor* output,
      const std::vector<int64_t>& dims,
      const MKLDNNMemoryFormat& fmt,
      platform::Place place) {
1183
    auto dst_md = platform::MKLDNNMemDesc(dims, dtype_dst_, fmt);
1184
    auto dst_data = output->mutable_data(
1185
        place, framework::TransToPhiDataType(vtype_dst_), dst_md.get_size());
1186
    return std::make_shared<dnnl::memory>(dst_md, engine_, dst_data);
1187 1188
  }

1189 1190 1191 1192
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p) {
    return std::make_shared<dnnl::reorder>(*(src_memory_p), *(dst_memory_p));
1193 1194
  }

1195 1196 1197 1198
  std::shared_ptr<dnnl::reorder> AcquireReorder(
      std::shared_ptr<dnnl::memory> dst_memory_p,
      std::shared_ptr<dnnl::memory> src_memory_p,
      const dnnl::primitive_attr& attrs) {
1199 1200
    return std::make_shared<dnnl::reorder>(
        *(src_memory_p), *(dst_memory_p), attrs);
1201 1202
  }

1203
 private:
A
Adam 已提交
1204
  std::vector<int64_t> dims_;
1205
  framework::proto::VarType::Type vtype_, vtype_dst_;
1206 1207
  dnnl::memory::data_type dtype_, dtype_dst_;
  dnnl::engine engine_;
1208 1209
};

1210 1211
template <typename T>
static void SetDstMemoryQuantized(
1212 1213 1214 1215
    const framework::ExecutionContext& ctx,
    framework::Tensor* output,
    std::vector<int64_t> dst_tz,
    const dnnl::engine& engine,
1216 1217
    std::shared_ptr<dnnl::memory::desc>& dst_md,  // NOLINT
    std::shared_ptr<dnnl::memory>& dst_memory,    // NOLINT
1218
    MKLDNNMemoryFormat output_format) {
1219 1220
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1221
  MKLDNNMemoryFormat dst_fmt;
1222

1223 1224
  PADDLE_ENFORCE_LE(dst_dims,
                    5,
1225 1226 1227 1228
                    platform::errors::InvalidArgument(
                        "Dst memory for quantization can not have "
                        "dims > 5. But received dst_dims is %d.",
                        dst_dims));
1229
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1230

1231 1232 1233 1234 1235
  auto tmp_dst_md =
      platform::MKLDNNMemDesc({dst_tz},
                              paddle::framework::ToMKLDNNDataType(
                                  framework::DataTypeTrait<T>::DataType()),
                              dst_fmt);
1236
  dst_md.reset(new dnnl::memory::desc(tmp_dst_md));
A
Adam 已提交
1237
  dst_memory.reset(
1238
      new dnnl::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1239
}
A
Adam Osewski 已提交
1240

J
Jacek Czaja 已提交
1241 1242
}  // namespace platform
}  // namespace paddle