未验证 提交 41c4f723 编写于 作者: J jakpiase 提交者: GitHub

Added expand_v2 BF16/FP32 FWD/BWD kernels (#34284)

* added expand_v2 bf16/fp32 kernel

* minor change

* CI fix

* added missing test file

* added formatting

* reduced binary size

* CI fix
上级 b68e36d6
......@@ -89,9 +89,17 @@ class ExpandV2Op : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
......@@ -130,6 +138,14 @@ class ExpandV2OpMaker : public framework::OpProtoAndCheckerMaker {
"the corresponding value given by Attr(expand_times).");
AddAttr<std::vector<int>>("shape", "The expanded shape for each dimension.")
.SetDefault({});
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"mkldnn_data_type",
"(string, default \"float32\"). Data type of mkldnn kernel")
.SetDefault("float32")
.InEnum({"float32", "bfloat16"});
AddComment(R"DOC(
Expand the input to the given shape. The rank of X
should be in [1, 6] and size of 'shape' must be in [1, 6] also.
......@@ -200,9 +216,17 @@ class ExpandV2GradOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace {
using paddle::framework::Tensor;
using paddle::framework::vectorize;
using paddle::framework::GradVarName;
using paddle::framework::ExecutionContext;
using paddle::platform::MKLDNNDeviceContext;
template <typename T>
class ExpandMKLDNNKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const ExecutionContext& ctx) const override {
this->RunKernel(ctx);
}
void RunKernel(const ExecutionContext& ctx) const {
const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();
const auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto x_vec_dims = vectorize(x->dims());
auto out_vec_dims = vectorize(out->dims());
dnnl::memory::format_tag x_format_tag = x->format();
if (x_vec_dims.size() != out_vec_dims.size()) {
x_format_tag =
GetExtendedFormatTag(x_vec_dims, out_vec_dims.size(), x_format_tag);
}
out->set_format(x_format_tag);
paddle::platform::BroadcastDataMKLDNNHandler<T> handler(
dnnl::algorithm::binary_add, dev_ctx, onednn_engine, ctx.GetPlace(),
out, x, 0.0f, 1.0f, ctx.InputName("X"), x_vec_dims);
auto src_memory_p = handler.AcquireSrcMemory(x);
auto dst_memory_p = handler.AcquireDstMemory(out);
auto binary_p = handler.AcquireForwardPrimitive();
const std::unordered_map<int, dnnl::memory> args = {
{DNNL_ARG_SRC_0, *dst_memory_p},
{DNNL_ARG_SRC_1, *src_memory_p},
{DNNL_ARG_DST, *dst_memory_p}};
auto& astream = MKLDNNDeviceContext::tls().get_stream();
binary_p->execute(astream, args);
astream.wait();
out->set_layout(paddle::framework::DataLayout::kMKLDNN);
out->set_format(paddle::platform::GetMKLDNNFormat(*dst_memory_p));
}
private:
dnnl::memory::format_tag GetExtendedFormatTag(
std::vector<int64_t>& dims, int new_size,
mkldnn::memory::format_tag format_tag) const {
mkldnn::memory::desc md(dims, paddle::platform::MKLDNNGetDataType<T>(),
format_tag);
std::vector<int64_t> new_dims(new_size, 1);
std::copy(dims.begin(), dims.end(),
new_dims.begin() + new_size - dims.size());
dims = std::move(new_dims);
return paddle::platform::GetMKLDNNFormat(md.reshape(dims));
}
};
template <typename T>
class ExpandGradMKLDNNKernel : public paddle::framework::OpKernel<T> {
public:
void Compute(const ExecutionContext& ctx) const override {
this->RunKernel(ctx);
}
void RunKernel(const ExecutionContext& ctx) const {
const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();
auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(GradVarName("X"));
auto dx_vec_dims = vectorize(dx->dims());
auto dout_vec_dims = vectorize(dout->dims());
if (dx_vec_dims.size() != dout_vec_dims.size()) {
dx_vec_dims.insert(dx_vec_dims.begin(),
dout_vec_dims.size() - dx_vec_dims.size(), 1);
}
auto& astream = MKLDNNDeviceContext::tls().get_stream();
if (dout_vec_dims == dx_vec_dims) {
mkldnn::memory::data_type dout_type =
paddle::framework::ToMKLDNNDataType(dout->type());
std::string key = paddle::platform::CreateKey(
dev_ctx, dout_vec_dims, dout->format(), dout->format(), dout_type);
paddle::platform::ReorderMKLDNNHandler reorder_handler(
dout_vec_dims, dout->type(), dout_type, dev_ctx, onednn_engine, key);
auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
dout->format(), paddle::platform::to_void_cast(dout->data<T>()));
auto reorder_dst_memory_p =
reorder_handler.AcquireDstMemory(dx, dout->format(), ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
reorder_dst_memory_p);
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
astream.wait();
dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
dx->set_format(
paddle::platform::GetMKLDNNFormat(reorder_dst_memory_p->get_desc()));
} else {
paddle::platform::ReductionMKLDNNHandler<T> handler(
dnnl::algorithm::reduction_sum, 0.0f, 0.0f, dev_ctx, onednn_engine,
ctx.GetPlace(), dout, dx, ctx.InputName("X"), dx_vec_dims);
auto src_memory_p = handler.AcquireSrcMemory(dout);
auto dst_memory_p = handler.AcquireDstMemory(dx);
std::unordered_map<int, dnnl::memory> reduction_args = {
{DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
auto reduction_p = handler.AcquireForwardPrimitive();
reduction_p->execute(astream, reduction_args);
astream.wait();
dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
dx->set_format(paddle::platform::GetMKLDNNFormat(
dst_memory_p->get_desc().reshape(vectorize<int64_t>(dx->dims()))));
}
}
};
} // anonymous namespace
REGISTER_OP_KERNEL(expand_v2, MKLDNN, paddle::platform::CPUPlace,
ExpandMKLDNNKernel<float>,
ExpandMKLDNNKernel<paddle::platform::bfloat16>);
REGISTER_OP_KERNEL(expand_v2_grad, MKLDNN, paddle::platform::CPUPlace,
ExpandGradMKLDNNKernel<float>,
ExpandGradMKLDNNKernel<paddle::platform::bfloat16>);
......@@ -165,23 +165,21 @@ class ReduceGradMKLDNNKernel : public framework::OpKernel<T> {
x_format_tag = getPlainFormatTag(output_dx);
}
output_dx->mutable_data<T>(ctx.GetPlace());
output_dx->set_format(x_format_tag);
output_dx->set_layout(input_dy->layout());
platform::BroadcastDataMKLDNNHandler<T> handler(
binary_type, dev_ctx, onednn_engine, ctx.GetPlace(), output_dx,
input_dy, scale_x, scale_y,
ctx.InputName(framework::GradVarName("Out")), input_dims);
const auto src_dx_memory = handler.AcquireSrcMemory(output_dx);
const auto src_dy_memory = handler.AcquireSecondSrcMemory(input_dy);
const auto src_memory_p = handler.AcquireSrcMemory(input_dy);
const auto dst_memory_p = handler.AcquireDstMemory(output_dx);
const auto binary_prim = handler.AcquireForwardPrimitive();
const std::unordered_map<int, dnnl::memory> args = {
{DNNL_ARG_SRC_0, *src_dx_memory},
{DNNL_ARG_SRC_1, *src_dy_memory},
{DNNL_ARG_DST, *src_dx_memory}};
{DNNL_ARG_SRC_0, *dst_memory_p},
{DNNL_ARG_SRC_1, *src_memory_p},
{DNNL_ARG_DST, *dst_memory_p}};
auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
binary_prim->execute(astream, args);
......
......@@ -695,8 +695,8 @@ class BroadcastDataMKLDNNHandler
BroadcastDataMKLDNNHandler(const dnnl::algorithm algo,
const MKLDNNDeviceContext& dev_ctx,
const mkldnn::engine engine,
platform::Place cpu_place, const Tensor* x,
const Tensor* y, float scale_x, float scale_y,
platform::Place cpu_place, const Tensor* out,
const Tensor* x, float scale_x, float scale_y,
const std::string& uniq_name,
const std::vector<int64_t>& input_dims)
: platform::MKLDNNHandlerT<T, dnnl::binary>(
......@@ -711,19 +711,12 @@ class BroadcastDataMKLDNNHandler
x->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument("Wrong format set for X tensor."));
PADDLE_ENFORCE_EQ(
y->layout(), DataLayout::kMKLDNN,
platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
PADDLE_ENFORCE_NE(
y->format(), MKLDNNMemoryFormat::undef,
platform::errors::InvalidArgument("Wrong format set for Y tensor."));
const auto src0_tz = framework::vectorize(x->dims());
const auto src0_tz = framework::vectorize(out->dims());
const auto src0_md = dnnl::memory::desc(
src0_tz, platform::MKLDNNGetDataType<T>(), x->format());
src0_tz, platform::MKLDNNGetDataType<T>(), out->format());
const auto src1_md = dnnl::memory::desc(
input_dims, platform::MKLDNNGetDataType<T>(), x->format());
input_dims, platform::MKLDNNGetDataType<T>(), out->format());
dnnl::primitive_attr attributes;
attributes.set_scales(DNNL_ARG_SRC_0, 0, {scale_x});
......@@ -734,18 +727,14 @@ class BroadcastDataMKLDNNHandler
}
}
std::shared_ptr<mkldnn::memory> AcquireSrcMemory(framework::Tensor* input) {
T* input_data = input->data<T>();
memset(input_data, 0, this->fwd_pd_->src_desc().get_size());
return this->AcquireMemoryFromPrimitive(
this->fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src0_mem_p");
}
std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
const framework::Tensor* input) {
const T* input_data = input->data<T>();
return this->AcquireMemoryFromPrimitive(
this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
template <typename T_out = T>
std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
T_out* ptr = output->mutable_data<T_out>(
this->place_, this->fwd_pd_->dst_desc().get_size());
;
memset(ptr, 0, this->fwd_pd_->dst_desc().get_size());
return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr,
"@dst_mem_p");
}
};
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard, core
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
@OpTestTool.skip_if(core.is_compiled_with_cuda(),
"CUDA required dygraph so oneDNN UT must be skipped")
class TestExpandV2OneDNNOp(OpTest):
def setUp(self):
self.op_type = "expand_v2"
self.init_data()
self.x = np.random.random(self.ori_shape).astype("float32")
self.set_inputs()
self.attrs = {'shape': self.shape, 'use_mkldnn': True}
output = np.tile(self.x, self.expand_times)
self.outputs = {'Out': output}
def set_inputs(self):
self.inputs = {'X': self.x}
def init_data(self):
self.ori_shape = [1, 140]
self.shape = [12, 140]
self.expand_times = [12, 1]
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad(self):
self.check_grad_with_place(core.CPUPlace(), ["X"], "Out")
class TestExpandV2ExpandDimOneDNNOp(TestExpandV2OneDNNOp):
def init_data(self):
self.ori_shape = [120]
self.shape = [2, 120]
self.expand_times = [2, 1]
class TestExpandV2CopyScenarioOneDNNOp(TestExpandV2OneDNNOp):
def init_data(self):
self.ori_shape = (2, 10, 5)
self.shape = (2, 10, 5)
self.expand_times = (1, 1, 1)
class TestExpandV2CopyScenarioShapeNotGivenOneDNNOp(TestExpandV2OneDNNOp):
def init_data(self):
self.ori_shape = (2, 4, 5, 7)
self.shape = (-1, -1, -1, -1)
self.expand_times = (1, 1, 1, 1)
# BF16 TESTS
def create_expand_v2_bf16_test_class(parent):
@OpTestTool.skip_if_not_cpu_bf16()
class TestExpandV2BF16OneDNNOp(parent):
def set_inputs(self):
self.inputs = {"X": convert_float_to_uint16(self.x)}
def calculate_grads(self):
self.dout = self.outputs['Out']
self.dx = self.dout.copy()
for i in range(len(self.shape)):
if self.expand_times[i] != 1:
self.dx = np.sum(self.dx, axis=i, keepdims=True)
def test_check_grad(self):
self.calculate_grads()
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[convert_float_to_uint16(self.dx)],
user_defined_grad_outputs=[self.dout])
cls_name = "{0}_{1}".format(parent.__name__, "Expand_v2_BF16")
TestExpandV2BF16OneDNNOp.__name__ = cls_name
globals()[cls_name] = TestExpandV2BF16OneDNNOp
create_expand_v2_bf16_test_class(TestExpandV2OneDNNOp)
create_expand_v2_bf16_test_class(TestExpandV2ExpandDimOneDNNOp)
create_expand_v2_bf16_test_class(TestExpandV2CopyScenarioOneDNNOp)
create_expand_v2_bf16_test_class(TestExpandV2CopyScenarioShapeNotGivenOneDNNOp)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册