mkldnn_reuse.h 60.2 KB
Newer Older
J
Jacek Czaja 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

16
#include <memory>
17
#include <sstream>
J
Jacek Czaja 已提交
18
#include <string>
19
#include <utility>
J
Jacek Czaja 已提交
20
#include <vector>
21
#include "boost/optional.hpp"
X
xiaoli.liu@intel.com 已提交
22
#include "paddle/fluid/framework/data_layout_transform.h"
J
Jacek Czaja 已提交
23
#include "paddle/fluid/framework/operator.h"
24
#include "paddle/fluid/operators/pool_op.h"
J
Jacek Czaja 已提交
25 26 27 28 29 30
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace platform {

31 32
using framework::DataLayout;
using framework::Tensor;
J
Jacek Czaja 已提交
33
using user_function = std::function<std::shared_ptr<float>(const float*)>;
34
using memory = mkldnn::memory;
J
Jacek Czaja 已提交
35

36 37
template <typename T, typename TForward,
          typename TBackward = mkldnn_dummy_primitive>
38 39 40 41 42 43 44 45 46 47
class MKLDNNHandlerT {
 public:
  MKLDNNHandlerT(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                 platform::Place cpu_place, const std::string& base_key)
      : dev_ctx_(dev_ctx),
        engine_(engine),
        place_(cpu_place),
        key_common_(base_key),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
48 49
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
50 51 52 53
      key_ = key_common_;
    } else {
      key_ = key_common_ + "-t:" + ThreadIDasStr();
    }
54
    key_ += dev_ctx.GetKeySuffix();
55 56
  }

A
Adam 已提交
57
  std::shared_ptr<TForward> AcquireForwardPrimitive() {
58
    const std::string key_p = key_ + "@fwd_p";
59 60 61
    auto forward_p =
        std::static_pointer_cast<TForward>(dev_ctx_.GetBlob(key_p));
    if (forward_p == nullptr) {
A
Adam 已提交
62
      forward_p = std::make_shared<TForward>(*fwd_pd_);
63 64 65 66 67
      dev_ctx_.SetBlob(key_p, forward_p);
    }
    return forward_p;
  }

A
Adam 已提交
68
  std::shared_ptr<TBackward> AcquireBackwardPrimitive() {
69
    const std::string key_p = key_ + "@bwd_p";
70 71 72
    auto backward_p =
        std::static_pointer_cast<TBackward>(dev_ctx_.GetBlob(key_p));
    if (backward_p == nullptr) {
A
Adam 已提交
73
      backward_p = std::make_shared<TBackward>(*bwd_pd_);
74 75 76 77 78
      dev_ctx_.SetBlob(key_p, backward_p);
    }
    return backward_p;
  }

79 80 81
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
82 83
    return this->AcquireMemoryFromPrimitive(
        fwd_pd_->src_desc(), to_void_cast<T>(input_data), "@src_mem_p");
84 85
  }

86
  template <typename T_out = T>
87
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
88 89
    T_out* ptr =
        output->mutable_data<T_out>(place_, fwd_pd_->dst_desc().get_size());
A
Adam 已提交
90
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_desc(), ptr,
91 92 93
                                            "@dst_mem_p");
  }

94
  template <typename T_out = T>
95 96
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const framework::Tensor* output) {
97 98 99 100
    const T_out* output_data = output->data<T_out>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_desc(),
                                            to_void_cast<T_out>(output_data),
                                            "@bwd-dst_mem_p");
101 102 103 104 105
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
      const framework::Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
A
Adam 已提交
106 107
    return this->AcquireMemoryFromPrimitive(
        bwd_pd_->diff_dst_desc(), to_void_cast<T>(ptr), "@diff_dst_mem_p");
108 109 110 111
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
A
Adam 已提交
112 113 114 115
    T* ptr =
        diffsrc->mutable_data<T>(place_, bwd_pd_->diff_src_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_desc(), ptr,
                                            "@diff_src_mem_p");
116 117
  }

118
 protected:
119
  bool isCached() {
120
    const std::string key_pd = key_common_ + "@fwd_pd";
121 122
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
123

124
    const std::string key_p = key_ + "@fwd_p";
125
    return (dev_ctx_.GetBlob(key_p) != nullptr);
126 127
  }

128 129 130 131 132 133
  // If your primitive descriptor requires attributes, pass them as a
  // first argument and paramters to descriptor constructor in the following
  // arguments. Otherwise, all arguments will be forwarded to descriptor
  // constructor, including the first one.
  template <typename Arg, typename... Args>
  void AcquireForwardPrimitiveDescriptor(Arg&& first_arg, Args&&... args) {
134 135 136
    // Forward PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
137
    const std::string key_pd = key_common_ + "@fwd_pd";
138 139 140 141 142 143 144 145 146
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
          dev_ctx_.GetBlob(key_pd));
      if (fwd_pd_ == nullptr) {
147 148
        CreateForwardPrimitiveDescriptor(first_arg,
                                         std::forward<Args>(args)...);
149 150 151 152 153
        dev_ctx_.SetBlob(key_pd, fwd_pd_);
      }
    }
  }

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
  // Using sfinae to specialise variadic function. Workaround for not having
  // if constexpr in C++ 11.
  template <class First, class... Args>
  typename std::enable_if<std::is_same<typename std::decay<First>::type,
                                       dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<Args>(args)...);
    fwd_pd_ = std::make_shared<typename TForward::primitive_desc>(
        fwd_desc, first, engine_);
  }

  template <class First, class... Args>
  typename std::enable_if<!std::is_same<typename std::decay<First>::type,
                                        dnnl::primitive_attr>::value>::type
  CreateForwardPrimitiveDescriptor(First&& first, Args&&... args) {
    auto fwd_desc = typename TForward::desc(std::forward<First>(first),
                                            std::forward<Args>(args)...);
    fwd_pd_ =
        std::make_shared<typename TForward::primitive_desc>(fwd_desc, engine_);
  }

175 176
  template <typename... Args>
  void AcquireBackwardPrimitiveDescriptor(Args&&... args) {
177
    const std::string key_fwd_pd = key_common_ + "@fwd_pd";
178 179
    fwd_pd_ = std::static_pointer_cast<typename TForward::primitive_desc>(
        dev_ctx_.GetBlob(key_fwd_pd));
G
GaoWei8 已提交
180 181 182
    PADDLE_ENFORCE_NOT_NULL(
        fwd_pd_, platform::errors::Unavailable(
                     "Get MKLDNN Forward primitive %s failed.", key_fwd_pd));
183
    const std::string key_pd = key_ + "@bwd_pd";
184 185 186 187 188 189 190 191 192 193
    bwd_pd_ = std::static_pointer_cast<typename TBackward::primitive_desc>(
        dev_ctx_.GetBlob(key_pd));
    if (bwd_pd_ == nullptr) {
      auto bwd_desc = typename TBackward::desc(std::forward<Args>(args)...);
      bwd_pd_ = std::make_shared<typename TBackward::primitive_desc>(
          bwd_desc, engine_, *fwd_pd_);
      dev_ctx_.SetBlob(key_pd, bwd_pd_);
    }
  }

194 195 196 197 198 199
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      const std::string& suffix) {
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(key_ + suffix));
  }

200
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
201
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
202
    const auto local_key = key_ + suffix;
203 204 205
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
206
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
207 208 209 210 211 212 213
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

214 215 216 217 218 219 220 221 222 223 224 225
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  void AcquireReorder(const std::shared_ptr<mkldnn::memory>& user_memory_p,
                      const std::shared_ptr<mkldnn::memory>& target_memory_p,
                      const std::string& suffix) {
    const auto key_reorder_p = key_ + suffix + "reorder_p";

    auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
    }

    mkldnn::stream astream(engine_);
241 242 243

    platform::RecordEvent record_reorder("int_reorder",
                                         platform::EventRole::kUniqueOp);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                 {MKLDNN_ARG_TO, *target_memory_p}});
    astream.wait();
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryWithReorder(
      const mkldnn::memory::desc& user_md,
      const mkldnn::memory::desc& target_md, void* ptr,
      const std::string& suffix, bool is_persistent = false) {
    const auto target_key = key_ + suffix + "_target";
    const auto key_reorder_p = key_ + suffix + "reorder_p";
    const auto user_key = key_ + suffix + "_user";

    auto target_memory_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(target_key));

    if (target_memory_p == nullptr) {
      auto user_memory_p =
          std::make_shared<dnnl::memory>(user_md, engine_, ptr);
      if (user_md != target_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(target_md, engine_);
        auto reorder_p =
            std::make_shared<dnnl::reorder>(*user_memory_p, *target_memory_p);
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);

        mkldnn::stream astream(engine_);
270 271
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      } else {
        target_memory_p = user_memory_p;
      }
      dev_ctx_.SetBlob(user_key, user_memory_p);
      dev_ctx_.SetBlob(target_key, target_memory_p);
    } else if (!is_persistent) {
      mkldnn::stream astream(engine_);

      auto user_memory_p =
          std::static_pointer_cast<dnnl::memory>(dev_ctx_.GetBlob(user_key));
      user_memory_p->set_data_handle(ptr);

      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
290 291
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
292 293 294 295 296 297 298 299
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
      }
    }
    return target_memory_p;
  }

300 301 302 303 304 305
  std::shared_ptr<mkldnn::memory> AcquireMemory(const std::string& suffix) {
    const auto local_key = key_ + suffix;
    return std::static_pointer_cast<mkldnn::memory>(
        dev_ctx_.GetBlob(local_key));
  }

306 307 308 309 310 311 312 313 314 315
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  platform::Place place_;
  std::string key_;
  std::string key_common_;
  std::shared_ptr<typename TForward::primitive_desc> fwd_pd_;
  std::shared_ptr<typename TBackward::primitive_desc> bwd_pd_;
};

// TODO(grygielski) this class will be deleted later.
J
Jacek Czaja 已提交
316 317 318 319
class MKLDNNHandler {
 public:
  MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
                const std::string& base_key)
320
      : dev_ctx_(dev_ctx), engine_(engine), key_common_(base_key) {
321 322
    if (platform::MKLDNNDeviceContext::tls().get_cur_mkldnn_session_id() !=
        platform::MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_Default) {
323
      key_ = key_common_;
324
    } else {
A
Adam 已提交
325
      key_ = key_common_ + "-t:" + ThreadIDasStr();
326
    }
327
    key_ += dev_ctx.GetKeySuffix();
328
  }
J
Jacek Czaja 已提交
329 330 331 332 333 334 335 336 337 338 339

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_src_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_dst_mem_p");
  }

A
Adam 已提交
340
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
J
Jacek Czaja 已提交
341
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
342
    return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p");
J
Jacek Czaja 已提交
343 344
  }

A
Adam 已提交
345
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(
J
Jacek Czaja 已提交
346
      const mkldnn::memory::desc& md, void* ptr) {
A
Adam 已提交
347
    return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p");
J
Jacek Czaja 已提交
348 349 350
  }

  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
A
Adam 已提交
351
      mkldnn::memory::desc md, void* ptr, const std::string& suffix) {
J
Jacek Czaja 已提交
352 353 354 355
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
356
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
357 358 359 360 361 362 363
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

364 365 366 367 368 369 370 371 372 373 374 375
  std::shared_ptr<mkldnn::memory> AcquireMemoryFromPrimitive(
      mkldnn::memory::desc md, const std::string& suffix) {
    const auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      mem_p = std::make_shared<mkldnn::memory>(md, engine_);
      dev_ctx_.SetBlob(local_key, mem_p);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  // This incarnation of AcquireMemory can call user function eg. custom reorder
  // or preprocessing routine if needed
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const mkldnn::memory::desc& md, void* ptr, const std::string& suffix,
      user_function custom_func = {}) {
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Call custom reorder/preprocessing func if available
      if (custom_func) {
        auto reordered_data = custom_func(reinterpret_cast<const float*>(ptr));
        dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data);
        ptr = reinterpret_cast<void*>(reordered_data.get());
      }

A
Adam 已提交
393
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
J
Jacek Czaja 已提交
394 395 396 397 398 399 400
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

401
  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
402
      const std::vector<int64_t>& dims, const mkldnn::memory::data_type dtype,
403
      const MKLDNNMemoryFormat& fmt, void* ptr, const std::string& suffix) {
404 405 406 407 408 409 410
    /*Generate key*/
    auto local_key = key_ + suffix;
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto md = mkldnn::memory::desc(dims, dtype, fmt);

A
Adam 已提交
411
      mem_p = std::make_shared<mkldnn::memory>(md, engine_, ptr);
412 413 414 415 416 417 418
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }

J
Jacek Czaja 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
  std::shared_ptr<mkldnn::memory> AcquireMemory(
      const std::shared_ptr<mkldnn::memory>& user_memory_p,
      const std::shared_ptr<mkldnn::memory>& target_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto stored_reorder_p = std::static_pointer_cast<mkldnn::reorder>(
        dev_ctx_.GetBlob(key_reorder_p));

    if (stored_reorder_p) {
      pipeline.push_back(*stored_reorder_p);
    } else {
      auto reorder_p =
          std::make_shared<mkldnn::reorder>(*user_memory_p, *target_memory_p);
      dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
436
      mkldnn::stream astream(engine_);
437 438
      platform::RecordEvent record_reorder("int_reorder",
                                           platform::EventRole::kUniqueOp);
A
Adam 已提交
439 440 441
      reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                   {MKLDNN_ARG_TO, *target_memory_p}});
      astream.wait();
J
Jacek Czaja 已提交
442 443 444 445 446 447
    }

    return target_memory_p;
  }

  std::shared_ptr<mkldnn::memory> AcquireMemory(
A
Adam 已提交
448 449
      mkldnn::memory::desc& md,       // NOLINT
      mkldnn::memory::desc& user_md,  // NOLINT
J
Jacek Czaja 已提交
450 451 452
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      const std::string& suffix,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
453 454
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
J
Jacek Czaja 已提交
455 456 457 458 459 460
    // create reorder primitive if the input format is not the preferred one
    auto local_key = key_ + suffix;
    auto key_reorder_p = key_ + suffix + "reorder_p";

    auto target_memory_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
A
Adam 已提交
461 462 463

    mkldnn::stream astream(engine_);

J
Jacek Czaja 已提交
464 465
    if (target_memory_p == nullptr) {
      target_memory_p = user_memory_p;
A
Adam 已提交
466 467 468
      if (md != user_md) {
        target_memory_p = std::make_shared<mkldnn::memory>(md, engine_);
        std::shared_ptr<mkldnn::reorder::primitive_desc> reorder_pd;
469 470 471 472 473
        if (is_INT8) {
          mkldnn::primitive_attr
              attri;  // attribute for int8 weights and bias data reorder.
          attri.set_output_scales(mask, scale_data);

A
Adam 已提交
474 475 476
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p, attri));
477
        } else {
A
Adam 已提交
478 479 480
          reorder_pd = std::shared_ptr<mkldnn::reorder::primitive_desc>(
              new mkldnn::reorder::primitive_desc(*user_memory_p,
                                                  *target_memory_p));
481
        }
A
Adam 已提交
482 483
        auto reorder_p =
            std::shared_ptr<mkldnn::reorder>(new mkldnn::reorder(*reorder_pd));
J
Jacek Czaja 已提交
484
        dev_ctx_.SetBlob(key_reorder_p, reorder_p);
A
Adam 已提交
485

486 487
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
488 489 490
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
491 492 493 494 495 496 497
      }
      dev_ctx_.SetBlob(local_key, target_memory_p);
    } else if (!is_persistent) {
      // Make reorder if needed
      auto reorder_p = std::static_pointer_cast<mkldnn::reorder>(
          dev_ctx_.GetBlob(key_reorder_p));
      if (reorder_p != nullptr) {
498 499
        platform::RecordEvent record_reorder("int_reorder",
                                             platform::EventRole::kUniqueOp);
A
Adam 已提交
500 501 502
        reorder_p->execute(astream, {{MKLDNN_ARG_FROM, *user_memory_p},
                                     {MKLDNN_ARG_TO, *target_memory_p}});
        astream.wait();
J
Jacek Czaja 已提交
503 504 505 506 507 508 509 510 511
      }
    }
    return target_memory_p;
  }

 protected:
  const MKLDNNDeviceContext& dev_ctx_;
  mkldnn::engine engine_;
  std::string key_;
512
  std::string key_common_;
J
Jacek Czaja 已提交
513 514
};

515 516 517
template <typename T>
class BinaryMKLDNNHandler : public platform::MKLDNNHandlerT<T, dnnl::binary> {
 public:
518 519
  BinaryMKLDNNHandler(const dnnl::algorithm algo, const int axis,
                      const MKLDNNDeviceContext& dev_ctx,
520 521
                      const mkldnn::engine engine, platform::Place cpu_place,
                      const Tensor* x, const Tensor* y, Tensor* z,
522
                      float scale_x, float scale_y, float scale_z,
523
                      const std::string& uniq_name)
524
      : platform::MKLDNNHandlerT<T, dnnl::binary>(
525
            dev_ctx, engine, cpu_place,
526 527 528 529
            platform::CreateKey(
                framework::vectorize(x->dims()),
                uniq_name + (algo == dnnl::algorithm::binary_mul ? "M" : ""))) {
    // bradcasting combined with in-place may require
530 531
    auto rankdiff = x->dims().size() - y->dims().size();
    if (rankdiff > 0) {
532 533 534
      auto suffix = std::to_string(rankdiff);
      this->key_ += suffix;
      this->key_common_ += suffix;
535 536
    }

537 538 539
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(
          x->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
540
          platform::errors::InvalidArgument("Wrong layout set for X tensor."));
541 542
      PADDLE_ENFORCE_NE(
          x->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
543
          platform::errors::InvalidArgument("Wrong format set for X tensor."));
544 545 546

      PADDLE_ENFORCE_EQ(
          y->layout(), DataLayout::kMKLDNN,
G
GaoWei8 已提交
547
          platform::errors::InvalidArgument("Wrong layout set for Y tensor."));
548 549
      PADDLE_ENFORCE_NE(
          y->format(), MKLDNNMemoryFormat::undef,
G
GaoWei8 已提交
550
          platform::errors::InvalidArgument("Wrong format set for Y tensor."));
551 552 553 554 555 556 557

      const auto src_x_tz = framework::vectorize(x->dims());
      const auto src_y_tz = framework::vectorize(y->dims());
      const auto dst_tz = framework::vectorize(z->dims());

      const auto src0_md = dnnl::memory::desc(
          src_x_tz, platform::MKLDNNGetDataType<T>(), x->format());
558
      auto src1_md = dnnl::memory::desc(
559
          src_y_tz, platform::MKLDNNGetDataType<T>(), y->format());
560
      if (rankdiff > 0) {
561 562 563
        std::vector<int64_t> dims1_ex(rankdiff, 1);
        dims1_ex.insert(next(dims1_ex.begin(), (axis == -1 ? rankdiff : axis)),
                        src_y_tz.begin(), src_y_tz.end());
564 565
        src1_md = src1_md.reshape(dims1_ex);
      }
566 567 568
      const auto dst_md = memory::desc(dst_tz, platform::MKLDNNGetDataType<T>(),
                                       MKLDNNMemoryFormat::any);

569 570 571
      auto attributes = CreateAttributes(algo, scale_x, scale_y, scale_z);
      this->AcquireForwardPrimitiveDescriptor(attributes, algo, src0_md,
                                              src1_md, dst_md);
572
    }
573 574 575 576 577 578
  }

  std::shared_ptr<mkldnn::memory> AcquireSecondSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(
579
        this->fwd_pd_->src1_desc(), to_void_cast<T>(input_data), "@src1_mem_p");
580
  }
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

 private:
  static inline dnnl::primitive_attr CreateAttributes(dnnl::algorithm op,
                                                      float scale_x,
                                                      float scale_y,
                                                      float scale_z) {
    // Scales set in attributes for inputs contibute to the output equation
    // in the following way (assuming no broadcasting takes place):
    // output_i = scale_0 * x_i <+ or *> scale_1 * y_i;
    // Hence we have to create scales that will:
    // 1. Dequantize both values, by multiplying with (1.0 / scale_x_or_y)
    // 2. Quantize their result to output scale range, by multiplying with
    // (scale_z)
    // If we combine these two, we end up with following equation
    // output = scale_out * (1/scale_x * x <* or +> 1/scale_y * y)
    // Hence, to mimic such behaviour using provided interface,
    // For add operation the equation is equal to:
    // output = (scale_out / scale_x) * x + (scale_out / scale_y) * y
    //                <scale_0>                  <scale_1>
    // For mul operation on the other hand
    // output = (scale_out / scale_x) * x * (1.0 / scale_y) * y
    //                <scale_0>                 <scale_1>
    float scale_0 = scale_z / scale_x;
    float scale_1 =
        op == dnnl::algorithm::binary_add ? scale_z / scale_y : 1.0 / scale_y;
    dnnl::primitive_attr attributes;
    attributes.set_scales(/* input_x_id = */ DNNL_ARG_SRC_0, /* mask = */ 0,
                          {scale_0});
    attributes.set_scales(/* input_y_id = */ DNNL_ARG_SRC_1, /* mask = */ 0,
                          {scale_1});
    return attributes;
  }
613 614
};

615
template <typename T>
616 617 618
class ActivationMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                            mkldnn::eltwise_backward> {
619
 public:
A
Adam 已提交
620
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
621
                          mkldnn::algorithm algorithm, float alpha, float beta,
622
                          const MKLDNNMemoryFormat fmt,
623 624 625 626
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

627 628 629
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
630
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
631 632
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

633 634
    this->AcquireForwardPrimitiveDescriptor(mkldnn::prop_kind::forward_training,
                                            algorithm, md, alpha, beta);
635
  }
636

A
Adam 已提交
637
  ActivationMKLDNNHandler(const std::vector<int64_t>& dims,
638 639 640 641 642 643 644
                          mkldnn::algorithm algorithm, float alpha, float beta,
                          const MKLDNNMemoryFormat fmt,
                          const MKLDNNMemoryFormat diff_fmt,
                          const platform::MKLDNNDeviceContext& dev_ctx,
                          platform::Place cpu_place,
                          const std::string& unique_name)

645 646 647
      : platform::MKLDNNHandlerT<T, mkldnn::eltwise_forward,
                                 mkldnn::eltwise_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
648
            platform::CreateKey(dims, "a", algorithm, unique_name)) {
649 650 651 652 653 654 655
    auto diff_dst_md = platform::MKLDNNMemDesc(
        dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
    auto src_md =
        platform::MKLDNNMemDesc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireBackwardPrimitiveDescriptor(algorithm, diff_dst_md, src_md,
                                             alpha, beta);
656
  }
657

658 659 660
  std::shared_ptr<mkldnn::memory> AcquireBackwardSrcMemory(
      const framework::Tensor* input) {
    const T* input_data = input->data<T>();
A
Adam 已提交
661
    return this->AcquireMemoryFromPrimitive(this->bwd_pd_->src_desc(),
662 663
                                            to_void_cast<T>(input_data),
                                            "@bwd-src_mem_p");
664 665 666
  }
};

J
Jacek Czaja 已提交
667 668 669
template <typename T>
class LRNMKLDNNHandler
    : public MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward> {
670
 public:
671
  LRNMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
J
Jacek Czaja 已提交
672
                   const platform::MKLDNNDeviceContext& dev_ctx,
673 674 675
                   const mkldnn::engine mkldnn_engine,
                   platform::Place cpu_place, const Tensor* input,
                   const std::string& unique_name)
676

J
Jacek Czaja 已提交
677
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            dev_ctx, mkldnn_engine, cpu_place,
            platform::CreateKey(framework::vectorize(input->dims()),
                                unique_name)) {
    if (!this->isCached()) {
      const int n = ctx.Attr<int>("n");
      // MKL-DNN implements LRN in a caffe way:
      // http://caffe.berkeleyvision.org/tutorial/layers/lrn.html
      // Where sum of squares is divided by size of normalization window
      // this is not the case for PaddlePaddle LRN.
      // Hence we need to compensate for this diffrence by
      // multipliing alpha by size of window(n)
      const float alpha = ctx.Attr<float>("alpha") * static_cast<float>(n);
      const float beta = ctx.Attr<float>("beta");
      const float k = ctx.Attr<float>("k");
      bool is_test = ctx.Attr<bool>("is_test");

      auto dims = paddle::framework::vectorize(input->dims());

      auto src_md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(),
                                         input->format());

      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          mkldnn::algorithm::lrn_across_channels, src_md, n, alpha, beta, k);
    }
704 705
  }

A
Adam 已提交
706 707
  LRNMKLDNNHandler(const std::vector<int64_t>& dims, const int n,
                   const float alpha, const float beta, const float k,
J
Jacek Czaja 已提交
708 709 710 711
                   const MKLDNNMemoryFormat fmt,
                   const MKLDNNMemoryFormat diff_fmt,
                   const platform::MKLDNNDeviceContext& dev_ctx,
                   platform::Place cpu_place, const std::string& unique_name)
712

J
Jacek Czaja 已提交
713 714
      : platform::MKLDNNHandlerT<T, mkldnn::lrn_forward, mkldnn::lrn_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
715
            platform::CreateKey(dims, unique_name)) {
J
Jacek Czaja 已提交
716 717 718 719
    auto src_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
720

J
Jacek Czaja 已提交
721
    this->AcquireBackwardPrimitiveDescriptor(
A
Adam 已提交
722 723
        mkldnn::algorithm::lrn_across_channels, src_md, diff_md, n, alpha, beta,
        k);
724 725
  }

J
Jacek Czaja 已提交
726 727 728
  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(
      framework::Tensor* workspace) {
    T* ptr = workspace->mutable_data<T>(
A
Adam 已提交
729 730 731
        this->place_, this->fwd_pd_->workspace_desc().get_size());
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            ptr, "@wrk_mem_p");
J
Jacek Czaja 已提交
732 733 734 735 736
  }

  std::shared_ptr<mkldnn::memory> AcquireBackwardWorkspaceMemory(
      const framework::Tensor* workspace) {
    const T* workspace_data = workspace->data<T>();
A
Adam 已提交
737 738 739
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->workspace_desc(),
                                            to_void_cast<T>(workspace_data),
                                            "@bwd-wrk_mem_p");
J
Jacek Czaja 已提交
740
  }
741 742
};

743 744 745
template <typename T>
class PoolingMKLDNNHandler : public MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                                   mkldnn::pooling_backward> {
746
 public:
747 748 749 750 751
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const MKLDNNDeviceContext& dev_ctx,
                       const mkldnn::engine mkldnn_engine,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const std::string& unique_name)
752 753 754
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
755 756 757 758 759 760
            platform::CreateKey(framework::vectorize(input->dims()),
                                framework::ToMKLDNNDataType(input->type()),
                                unique_name)) {
    if (!this->isCached()) {
      PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
G
GaoWei8 已提交
761
                            "Wrong layout set for Input tensor."));
762 763
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
G
GaoWei8 已提交
764
                            "Wrong format set for Input tensor."));
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

      const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

      std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
      std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      const bool global_pooling = ctx.Attr<bool>("global_pooling");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");

      // Only 2D pooling is supported now
G
GaoWei8 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
      PADDLE_ENFORCE_EQ(
          ksize.size(), 2,
          platform::errors::InvalidArgument(
              "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
              ksize.size()));
      PADDLE_ENFORCE_EQ(
          pooling_type == "max" || pooling_type == "avg", true,
          platform::errors::InvalidArgument(
              "The pooling_type must be 'max' or 'avg', but received %s.",
              pooling_type));
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input dim must be with 4, i.e. NCHW, but received %d.",
              input->dims().size()));
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

      const auto input_dims = input->dims();
      framework::DDim data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());

      if (global_pooling) {
        operators::UpdateKsize(&ksize, data_dims);
      }

      operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                               data_dims, strides, ksize);

      const auto src_tz = paddle::framework::vectorize(input->dims());
      const auto dst_tz = paddle::framework::vectorize(output->dims());

      const auto is_test = ctx.Attr<bool>("is_test");

      const auto dt = framework::ToMKLDNNDataType(input->type());
      const auto fmt = input->format();

      const auto exclude_padding = ctx.Attr<bool>("exclusive");

      const auto src_md = mkldnn::memory::desc(src_tz, dt, fmt);
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */

      const auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);

      auto mkldnn_paddings = ToMkldnnPadding(paddings);

      const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          mkldnn_paddings[1]);
      }
836 837 838

      ComputeAdaptivePoolParameters(ctx, src_tz, ksize, strides);

839 840 841 842 843 844 845 846 847 848
      this->AcquireForwardPrimitiveDescriptor(
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          src_md, dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);
849
    }
850 851 852
  }

  PoolingMKLDNNHandler(
A
Adam 已提交
853 854 855 856 857 858
      const std::vector<int64_t>& diff_dst_dims,
      const std::vector<int64_t>& diff_src_dims,
      const std::vector<int64_t>& ksize, const std::vector<int64_t>& strides,
      const std::vector<int64_t>& paddings, const std::string& pooling_type,
      bool ceil_mode, const MKLDNNMemoryFormat fmt,
      const MKLDNNMemoryFormat diff_dst_fmt, mkldnn::memory::data_type dt,
859
      const platform::MKLDNNDeviceContext& dev_ctx, platform::Place cpu_place,
860
      const std::string& unique_name, bool exclude_padding)
861 862 863
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
864
            platform::CreateKey(diff_src_dims, dt, unique_name)) {
865 866 867 868 869 870
    auto diff_dst_md = mkldnn::memory::desc(
        diff_dst_dims, platform::MKLDNNGetDataType<T>(), diff_dst_fmt);
    auto diff_src_md =
        mkldnn::memory::desc(diff_src_dims, platform::MKLDNNGetDataType<T>(),
                             MKLDNNMemoryFormat::any);

871 872
    auto mkldnn_paddings = ToMkldnnPadding(paddings);

873
    this->AcquireBackwardPrimitiveDescriptor(
874 875 876 877 878
        pooling_type == "max"
            ? mkldnn::algorithm::pooling_max
            : (exclude_padding
                   ? mkldnn::algorithm::pooling_avg_exclude_padding
                   : mkldnn::algorithm::pooling_avg_include_padding),
879
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
A
Adam 已提交
880
        mkldnn_paddings[1]);
881 882 883
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
A
Adam 已提交
884
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
885 886 887
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
888 889 890
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
891 892 893 894
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
895 896
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
897
      if (mem_p == nullptr) {
A
Adam 已提交
898
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
899
        this->dev_ctx_.SetBlob(local_key, mem_p);
900 901 902 903 904
      }
    }
    return mem_p;
  }

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>& ksize,
      std::vector<int64_t>& strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // (jczaja): oneDNN is supporting only unchangable in size pool window
      PADDLE_ENFORCE_EQ(
          src_tz[src_tz.size() - 1] % ksize[1], 0,
          platform::errors::Unimplemented(
              "Input dim must be divisible by corressponding ksize dim."));
      PADDLE_ENFORCE_EQ(
          src_tz[src_tz.size() - 2] % ksize[0], 0,
          platform::errors::Unimplemented(
              "Input dim must be divisible by corressponding ksize dim."));
      ksize[0] = src_tz[src_tz.size() - 2] / ksize[0];
      ksize[1] = src_tz[src_tz.size() - 1] / ksize[1];
      strides[0] = ksize[0];
      strides[1] = ksize[1];
    }
  }

926 927 928 929 930 931 932
 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
A
Adam 已提交
933 934 935 936
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
937 938 939 940
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
J
Jacek Czaja 已提交
941
        right_bot_padding[i] += strides[i] - 1;
942 943 944 945 946
      }
    }
  }
};

947
template <typename T>
948 949
class TransposeMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
950 951
  TransposeMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
                         std::vector<int>& axis,      // NOLINT
952 953 954 955
                         const platform::MKLDNNDeviceContext& dev_ctx,
                         mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
956 957 958 959
        axis_(axis),
        logical_axis_(dims.size(), 0) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
960
      const MKLDNNMemoryFormat& fmt, void* ptr) {
961 962 963 964 965 966 967 968 969
    auto local_key = key_ + "@user_src_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      // Make memory descriptor using input format, unless it
      // cannot be trusted (nchw) then make up memory fmt manually
      for (size_t i = 0; i < logical_axis_.size(); ++i) {
        logical_axis_[i] = i;
      }
970

A
Adam 已提交
971
      auto src_md = fmt != MKLDNNMemoryFormat::nchw
972
                        ? platform::MKLDNNMemDesc(
973
                              dims_, platform::MKLDNNGetDataType<T>(), fmt)
974
                        : Axis2MemoryDesc(dims_, logical_axis_);
A
Adam 已提交
975
      mem_p = std::make_shared<mkldnn::memory>(src_md, engine_, ptr);
976 977 978 979 980 981
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      mem_p->set_data_handle(ptr);
    }
    return mem_p;
  }
982 983 984 985 986 987 988

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
                                                   platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
A
Adam 已提交
989
      auto dst_md = Axis2MemoryDesc(dims_, axis_);
990

A
Adam 已提交
991
      auto dst_data = output->mutable_data<T>(place, dst_md.get_size());
992

A
Adam 已提交
993
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
994 995
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
996
      auto dst_data = output->mutable_data<T>(place);
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireTranspose(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@transpose_p";
    auto transpose_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (transpose_p == nullptr) {
      transpose_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, transpose_p);
    }
    return transpose_p;
  }

 protected:
A
Adam 已提交
1017 1018 1019 1020
  mkldnn::memory::desc Axis2MemoryDesc(std::vector<int64_t>& nchw_tz,  // NOLINT
                                       std::vector<int>& axis          // NOLINT
                                       ) {
    size_t ndims = axis.size();
1021

A
Adam 已提交
1022
    std::vector<int64_t> strides(ndims);
1023
    unsigned int total_stride = 1;
A
Adam 已提交
1024 1025
    for (int i = ndims - 1; i >= 0; --i) {
      strides[axis[i]] = total_stride;
1026 1027
      total_stride *= nchw_tz[axis[i]];
    }
A
Adam 已提交
1028 1029 1030 1031
    mkldnn::memory::desc mem_d(nchw_tz, platform::MKLDNNGetDataType<T>(),
                               strides);

    return mem_d;
1032 1033 1034
  }

 private:
A
Adam 已提交
1035
  std::vector<int64_t> dims_;
1036
  std::vector<int> axis_;
1037
  std::vector<int> logical_axis_;
1038 1039
};

1040 1041
class ReorderMKLDNNHandler : public MKLDNNHandler {
 public:
A
Adam 已提交
1042
  ReorderMKLDNNHandler(std::vector<int64_t>& dims,  // NOLINT
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
                       framework::proto::VarType::Type vtype,
                       mkldnn::memory::data_type dtype,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        dims_(dims),
        vtype_(vtype),
        dtype_(dtype) {}

  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
1053
      const MKLDNNMemoryFormat& fmt, void* ptr) {
1054
    return this->AcquireMemory(dims_, dtype_, fmt, ptr, "@user_src_mem_p");
1055 1056 1057
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemory(
1058
      framework::Tensor* output, const MKLDNNMemoryFormat& fmt,
1059 1060 1061 1062 1063 1064 1065 1066 1067
      platform::Place place) {
    auto local_key = key_ + "@user_dst_mem_p";
    auto mem_p =
        std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      auto dst_md = platform::MKLDNNMemDesc(dims_, dtype_, fmt);

      auto dst_data = output->mutable_data(place, vtype_);

A
Adam 已提交
1068
      mem_p = std::make_shared<mkldnn::memory>(dst_md, engine_, dst_data);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
      dev_ctx_.SetBlob(local_key, mem_p);
    } else {
      auto dst_data = output->mutable_data(place, vtype_);
      mem_p->set_data_handle(dst_data);
    }
    return mem_p;
  }

  std::shared_ptr<mkldnn::reorder> AcquireReorder(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    auto prim_key = key_ + "@reorder_p";
    auto reorder_p =
        std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
    if (reorder_p == nullptr) {
      reorder_p =
          std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
      dev_ctx_.SetBlob(prim_key, reorder_p);
    }
    return reorder_p;
  }

 private:
A
Adam 已提交
1092
  std::vector<int64_t> dims_;
1093 1094 1095 1096
  framework::proto::VarType::Type vtype_;
  mkldnn::memory::data_type dtype_;
};

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
template <typename T>
struct convolutional_algorithm;

template <>
struct convolutional_algorithm<mkldnn::convolution_forward> {
  static constexpr mkldnn::algorithm T = mkldnn::algorithm::convolution_direct;
};

template <>
struct convolutional_algorithm<mkldnn::deconvolution_forward> {
  static constexpr mkldnn::algorithm T =
      mkldnn::algorithm::deconvolution_direct;
};

J
Jacek Czaja 已提交
1111 1112 1113
template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
 public:
1114 1115 1116 1117
  ConvMKLDNNTemplateHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                            mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}

1118 1119 1120 1121 1122 1123 1124 1125 1126
  // TODO(jczaja): remove after conv int8 is adapted
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

J
Jacek Czaja 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
  ConvMKLDNNTemplateHandler(
      std::shared_ptr<typename forward_t::primitive_desc> conv_pd,
      std::shared_ptr<typename backward_data_t::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<typename backward_weights_t::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

A
Adam 已提交
1144
  size_t GetDstMemorySize() const { return conv_pd_->dst_desc().get_size(); }
J
Jacek Czaja 已提交
1145

1146
  MKLDNNMemoryFormat GetDstFormat() const {
A
Adam 已提交
1147
    return paddle::platform::GetMKLDNNFormat(conv_pd_->dst_desc());
J
Jacek Czaja 已提交
1148 1149 1150
  }

  size_t GetDiffWeightsMemorySize() const {
A
Adam 已提交
1151
    return conv_bwd_weights_pd_->diff_weights_desc().get_size();
J
Jacek Czaja 已提交
1152 1153 1154
  }

  size_t GetDiffSourceMemorySize() const {
A
Adam 已提交
1155
    return conv_bwd_data_pd_->diff_src_desc().get_size();
J
Jacek Czaja 已提交
1156 1157 1158 1159 1160
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1161 1162
    auto src_pd = conv_bwd_weights_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1163 1164 1165 1166 1167 1168 1169
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1170 1171
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1172 1173 1174 1175 1176 1177 1178
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
A
Adam 已提交
1179
        conv_bwd_weights_pd_->diff_weights_desc(), ptr, "@diff_weights_mem_p");
J
Jacek Czaja 已提交
1180 1181
  }

1182 1183 1184 1185 1186 1187
  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_desc(), "@diff_weights_mem_p");
  }

J
Jacek Czaja 已提交
1188 1189 1190
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1191 1192
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1193 1194 1195 1196 1197 1198 1199
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1200 1201
    auto weights_pd = conv_bwd_data_pd_->weights_desc();
    auto user_pd = user_weights_memory_p->get_desc();
J
Jacek Czaja 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireResidualDataMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromResidualDataMemory(
      const std::shared_ptr<mkldnn::memory>& user_residual_memory_p,
      void* dst_ptr,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    return this->AcquireMemory(user_residual_memory_p,
                               this->AcquireDstMemoryFromPrimitive(dst_ptr),
                               "@residual_data_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
A
Adam 已提交
1222 1223
    return this->AcquireMemoryFromPrimitive(conv_bwd_data_pd_->diff_src_desc(),
                                            ptr, "@diff_src_mem_p");
J
Jacek Czaja 已提交
1224 1225 1226
  }

  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
A
Adam 已提交
1227
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_desc(), ptr,
J
Jacek Czaja 已提交
1228 1229 1230 1231 1232 1233
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
A
Adam 已提交
1234 1235
    auto src_pd = conv_pd_->src_desc();
    auto user_pd = user_memory_p->get_desc();
J
Jacek Czaja 已提交
1236 1237 1238 1239
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

A
Adam 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemory(
      const mkldnn::memory::desc& md, void* ptr,
      user_function custom_func = {}) {
    return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func);
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemory(
      const mkldnn::memory::desc& md, void* ptr) {
    return this->AcquireMemory(md, ptr, "@user_bias_mem_p");
  }

J
Jacek Czaja 已提交
1251 1252 1253
  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
1254 1255
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f}, int mask = 0) {
A
Adam 已提交
1256 1257
    auto user_weights_pd = user_weights_memory_p->get_desc();
    auto weights_pd = conv_pd_->weights_desc();
1258 1259 1260
    return this->AcquireMemory(
        weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p",
        pipeline, is_persistent, is_INT8, scale_data, mask);
J
Jacek Czaja 已提交
1261 1262 1263 1264
  }

  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
1265 1266 1267 1268
      std::vector<mkldnn::primitive>& pipeline,  // NOLINT
      bool is_persistent = false, bool is_INT8 = false,
      std::vector<float> scale_data = {1.0f},
      int mask = 0) {  // NOLINT
A
Adam 已提交
1269 1270
    auto user_bias_pd = user_bias_memory_p->get_desc();
    auto bias_pd = conv_pd_->bias_desc();
J
Jacek Czaja 已提交
1271
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
1272 1273
                               "@bias_mem_p", pipeline, is_persistent, is_INT8,
                               scale_data, mask);
J
Jacek Czaja 已提交
1274 1275
  }

1276
  mkldnn::primitive_attr CreatePostOps(
1277 1278
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
1279
      float sum_scale = 1.0f) const {
1280 1281
    mkldnn::primitive_attr conv_attr;
    mkldnn::post_ops post_operations;
1282 1283 1284 1285
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
1286 1287 1288 1289 1290 1291
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
1292
      post_operations.append_sum(sum_scale);
1293 1294 1295
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
1296
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
1297 1298
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
1299
                                     fuse_alpha, fuse_beta);
1300
    } else if (fuse_activation == "relu6") {
1301 1302 1303
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale,
                                     mkldnn::algorithm::eltwise_bounded_relu,
1304
                                     fuse_alpha, fuse_beta);
1305 1306 1307 1308
    } else if (fuse_activation == "swish") {
      constexpr float scale = 1.0f;
      post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_swish,
                                     fuse_alpha, fuse_beta);
1309
    }
1310 1311 1312 1313 1314 1315 1316 1317
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

  std::shared_ptr<typename forward_t::primitive_desc>
  AcquireConvolutionPrimitiveDescriptor(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& weights,
      boost::optional<const mkldnn::memory::desc&> bias,
A
Adam 已提交
1318
      const mkldnn::memory::desc& dst, const std::vector<int64_t>& strides,
1319
      const std::vector<int64_t>& dilations,
A
Adam 已提交
1320
      const std::vector<int64_t>& paddings, const mkldnn::engine& engine,
1321 1322
      const std::string& fuse_activation, float fuse_alpha, float fuse_beta,
      const bool fuse_residual_conn, mkldnn::prop_kind fwd_prop_kind,
1323 1324
      const std::vector<float> output_shift_scale = {},
      const float sum_scale = 1.0f) {
1325 1326 1327 1328
    // Conv PD has to be passed to Grad op that
    // may be exxecuted by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_conv_pd = key_common_ + "@conv_pd";
1329

1330
    conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
1331 1332
        dev_ctx_.GetBlob(key_conv_pd));

1333 1334 1335 1336 1337 1338 1339 1340 1341
    if (conv_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);

      conv_pd_ = std::static_pointer_cast<typename forward_t::primitive_desc>(
          dev_ctx_.GetBlob(key_conv_pd));
      if (conv_pd_ == nullptr) {
        mkldnn::memory::dims stride_dims = strides;
1342
        mkldnn::memory::dims dilations_dims = dilations;
1343
        auto mkldnn_paddings = ToMkldnnPadding(paddings);
1344 1345

        auto conv_desc =
A
Adam 已提交
1346 1347
            bias ? typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1348
                       src, weights, *bias, dst, stride_dims, dilations_dims,
A
Adam 已提交
1349 1350 1351
                       mkldnn_paddings[0], mkldnn_paddings[1])
                 : typename forward_t::desc(
                       fwd_prop_kind, convolutional_algorithm<forward_t>::T,
1352 1353
                       src, weights, dst, stride_dims, dilations_dims,
                       mkldnn_paddings[0], mkldnn_paddings[1]);
1354

1355
        mkldnn::primitive_attr conv_attr =
1356 1357
            CreatePostOps(fuse_activation, fuse_alpha, fuse_beta,
                          fuse_residual_conn, output_shift_scale, sum_scale);
1358 1359 1360 1361 1362 1363

        conv_pd_.reset(new typename forward_t::primitive_desc(
            conv_desc, conv_attr, engine));
        // Save conv_pd/src_memory/weights_memory for backward pass
        dev_ctx_.SetBlob(key_conv_pd, conv_pd_);
      }
1364 1365 1366 1367 1368
    }

    return conv_pd_;
  }

A
Adam 已提交
1369
  std::shared_ptr<forward_t> AcquireConvolution() {
J
Jacek Czaja 已提交
1370 1371 1372 1373
    auto prim_key = key_ + "@conv_p";
    auto conv_p =
        std::static_pointer_cast<forward_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_p == nullptr) {
A
Adam 已提交
1374
      conv_p = std::make_shared<forward_t>(*conv_pd_);
J
Jacek Czaja 已提交
1375 1376 1377 1378 1379 1380

      dev_ctx_.SetBlob(prim_key, conv_p);
    }
    return conv_p;
  }

A
Adam 已提交
1381
  std::shared_ptr<backward_weights_t> AcquireConvolutionBackwardWeights() {
J
Jacek Czaja 已提交
1382 1383 1384 1385 1386
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p = std::static_pointer_cast<backward_weights_t>(
        dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
A
Adam 已提交
1387 1388
      conv_bwd_weights_p =
          std::make_shared<backward_weights_t>(*conv_bwd_weights_pd_);
J
Jacek Czaja 已提交
1389 1390 1391 1392 1393
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    }
    return conv_bwd_weights_p;
  }

A
Adam 已提交
1394
  std::shared_ptr<backward_data_t> AcquireConvolutionBackwardData() {
J
Jacek Czaja 已提交
1395 1396 1397 1398
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<backward_data_t>(dev_ctx_.GetBlob(prim_key));
    if (conv_bwd_data_p == nullptr) {
A
Adam 已提交
1399
      conv_bwd_data_p = std::make_shared<backward_data_t>(*conv_bwd_data_pd_);
J
Jacek Czaja 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    }
    return conv_bwd_data_p;
  }

 private:
  std::shared_ptr<typename forward_t::primitive_desc> conv_pd_;
  std::shared_ptr<typename backward_weights_t::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<typename backward_data_t::primitive_desc> conv_bwd_data_pd_;
};

using ConvMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::convolution_forward,
                              mkldnn::convolution_backward_data,
                              mkldnn::convolution_backward_weights>;

using ConvTransposeMKLDNNHandler =
    ConvMKLDNNTemplateHandler<mkldnn::deconvolution_forward,
                              mkldnn::deconvolution_backward_data,
                              mkldnn::deconvolution_backward_weights>;
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
  return dst_memory_p;
}

template <typename T>
static std::shared_ptr<mkldnn::memory> SetDstMemory(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const framework::Tensor* residual_param,
    const mkldnn::memory::desc& user_residual_md,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::vector<mkldnn::primitive>* pipeline) {
  const T* residual_param_data = residual_param->data<T>();
1441 1442 1443 1444
  PADDLE_ENFORCE_NOT_NULL(
      residual_param_data,
      platform::errors::PreconditionNotMet("Residual parameter is required for "
                                           "the DNNL conv+elementwise_add "
G
GaoWei8 已提交
1445
                                           "fusion, but now it is missing."));
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
  std::shared_ptr<mkldnn::memory> user_residual_memory_p =
      handler->AcquireResidualDataMemory(user_residual_md,
                                         to_void_cast<T>(residual_param_data));
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  std::shared_ptr<mkldnn::memory> dst_memory_p =
      handler->AcquireDstMemoryFromResidualDataMemory(
          user_residual_memory_p, to_void_cast<T>(output_data), *pipeline);
  return dst_memory_p;
}

template <typename T>
static void SetDstMemoryHandler(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
    const std::shared_ptr<ConvMKLDNNHandler>& handler,
    std::shared_ptr<mkldnn::memory> dst_memory_p) {
  T* output_data =
      output->mutable_data<T>(ctx.GetPlace(), handler->GetDstMemorySize());
  dst_memory_p->set_data_handle(to_void_cast<T>(output_data));
}

1466 1467 1468
template <typename T>
static void SetDstMemoryQuantized(
    const framework::ExecutionContext& ctx, framework::Tensor* output,
A
Adam 已提交
1469 1470
    std::vector<int64_t> dst_tz, const mkldnn::engine& engine,
    std::shared_ptr<mkldnn::memory::desc>& dst_md,  // NOLINT
1471 1472
    std::shared_ptr<mkldnn::memory>& dst_memory,    // NOLINT
    MKLDNNMemoryFormat output_format) {
1473 1474
  T* output_data = output->mutable_data<T>(ctx.GetPlace());
  const size_t dst_dims = dst_tz.size();
1475
  MKLDNNMemoryFormat dst_fmt;
G
GaoWei8 已提交
1476 1477 1478 1479
  PADDLE_ENFORCE_LE(dst_dims, 5, platform::errors::InvalidArgument(
                                     "Dst memory for quantization can not have "
                                     "dims > 5. But received dst_dims is %d.",
                                     dst_dims));
1480
  dst_fmt = platform::MKLDNNFormatForSize(dst_dims, output_format);
1481

A
Adam 已提交
1482
  auto tmp_dst_md = platform::MKLDNNMemDesc(
1483
      {dst_tz}, paddle::framework::ToMKLDNNDataType(
1484
                    framework::DataTypeTrait<T>::DataType()),
1485
      dst_fmt);
A
Adam 已提交
1486 1487 1488
  dst_md.reset(new mkldnn::memory::desc(tmp_dst_md));
  dst_memory.reset(
      new mkldnn::memory(*dst_md, engine, to_void_cast<T>(output_data)));
1489 1490
}

J
Jacek Czaja 已提交
1491 1492
}  // namespace platform
}  // namespace paddle