engine.cc 11.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31 32 33 34 35 36 37 38 39 40 41
void TensorRTEngine::InitNetwork() {
  freshDeviceId();
  infer_builder_.reset(createInferBuilder(&logger_));

  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
    infer_networkv2_.reset(infer_builder_->createNetworkV2(
        1U << static_cast<int>(
            nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH)));
    infer_builder_config_.reset(infer_builder_->createBuilderConfig());
    infer_ptr<nvinfer1::IBuilderConfig> infer_builder_config_;
42
    optim_profile_ = infer_builder_->createOptimizationProfile();
43 44 45 46
#endif
  } else {
    infer_network_.reset(infer_builder_->createNetwork());
  }
Y
Yan Chunwei 已提交
47 48
}

49 50
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
51
  freshDeviceId();
52 53 54 55 56 57 58
  auto infer_context = context();
  if (!with_dynamic_shape()) {
    infer_context->enqueue(batch_size, buffers->data(), stream, nullptr);
  } else {
#if IS_TRT_VERSION_GE(6000)
    infer_context->enqueueV2(buffers->data(), stream, nullptr);
#endif
59
  }
N
nhzlx 已提交
60 61 62
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
63
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
64
  freshDeviceId();
65
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
66 67
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
68 69 70
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "Call InitNetwork first to initialize network."));
Y
Yan Chunwei 已提交
71 72 73
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
74
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
75
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
76 77 78 79 80 81
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
82 83
    } else {
      LOG(INFO) << "Run Paddle-TRT FP16 mode";
Z
Zhaolong Xing 已提交
84 85
    }
  }
86
#else
87
  if (enable_fp16)
88
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
89 90
                 "is at least 5."
                 "So, use FP32 to run.";
91
#endif
Z
Zhaolong Xing 已提交
92 93 94
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
95
    infer_builder_->setInt8Mode(true);
96 97 98 99 100 101 102 103 104 105 106 107 108 109
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
110 111
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
112 113 114 115
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
116 117
      for (int i = 0; i < network()->getNbInputs(); i++) {
        all_t.insert(network()->getInput(i));
118 119 120 121
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
T
tianshuo78520a 已提交
122 123 124
          VLOG(3) << "We are in trt int8 mode(not calibration), scale not set"
                  << " for tensor " << t->getName()
                  << ", this might be ok when trt does not need this range";
125 126
        }
      }
127
#if IS_TRT_VERSION_GE(5122)
128 129 130 131 132 133 134 135 136 137
      auto is_layer_int8 = [&](nvinfer1::ILayer *layer) -> bool {
        for (int j = 0; j < layer->getNbInputs(); j++) {
          auto *temp_in = layer->getInput(j);
          if (!temp_in->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its input("
                    << temp_in->getName() << ") doesn't have dynamic range.";
            return false;
          }
        }
138 139
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          auto *temp_out = layer->getOutput(j);
140 141 142 143 144 145 146 147 148 149 150
          if (temp_out->isNetworkOutput()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") is the output of the network.";
            return false;
          }
          if (!temp_out->dynamicRangeIsSet()) {
            VLOG(1) << "Layer(Name: " << layer->getName()
                    << ") is set to float32 because its output("
                    << temp_out->getName() << ") doesn't have dynamic range.";
            return false;
151 152
          }
        }
153 154 155 156 157 158 159 160 161 162 163
        return true;
      };
      // If a layer's output is the network's output, or not all of its inputs
      // and outputs have scales,
      // this layer's precision and output type are set to float32.
      // This step has no effect if this layer is fused during TRT optimization.
      for (int i = 0; i < network()->getNbLayers(); i++) {
        auto layer = network()->getLayer(i);
        if (!is_layer_int8(layer)) {
          layer->setPrecision(nvinfer1::DataType::kFLOAT);
        }
164
      }
165 166 167 168 169
#else
      LOG(WARNING) << "If your TensorRT version is lower than 5.1.2.2, you "
                      "must provide quantization scales for all tensors using "
                      "TRT to run.";
#endif
170 171
#endif
    }
N
nhzlx 已提交
172
  }
Y
Yan Chunwei 已提交
173

174 175
  if (with_dynamic_shape_) {
#if IS_TRT_VERSION_GE(6000)
176
    LOG(INFO) << "Run Paddle-TRT Dynamic Shape mode.";
177 178 179 180 181 182 183 184 185 186 187
    for (auto &input : min_input_shape_) {
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMIN,
          Vec2TRT_Dims(input.second, input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kMAX,
          Vec2TRT_Dims(max_input_shape_[input.first], input.first, true));
      optim_profile_->setDimensions(
          input.first.c_str(), nvinfer1::OptProfileSelector::kOPT,
          Vec2TRT_Dims(optim_input_shape_[input.first], input.first, true));
    }
188
    infer_builder_config_->addOptimizationProfile(optim_profile_);
189 190 191 192 193 194 195 196
    infer_builder_config_->setMaxWorkspaceSize(max_workspace_);
    if (enable_int8) {
      // Due to a bug of TRT, we must set precision BuilderFlag to kFP16 before
      // kINT8 here to perform INT8 inference.
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kINT8);
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kSTRICT_TYPES);
    }
197 198 199 200 201 202 203 204 205 206
    if (WithFp16()) {
      infer_builder_config_->setFlag(nvinfer1::BuilderFlag::kFP16);
      if (disable_trt_plugin_fp16()) {
        LOG(INFO) << "NOTE: In order to achieve higher accuracy, you have "
                     "disabled the fp16 mode of TRT Plugin,\n"
                  << "you can reopen it with "
                     "'config.SetDynamicShapeInfo(min_shape, max_shape, "
                     "opt_shape, false /*disable_trt_plugin_fp16*/)'";
      }
    }
207 208 209 210 211 212
    infer_engine_.reset(infer_builder_->buildEngineWithConfig(
        *network(), *infer_builder_config_));
#endif
  } else {
    infer_engine_.reset(infer_builder_->buildCudaEngine(*network()));
  }
Y
Yan Chunwei 已提交
213 214 215
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
}

216
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
217
                                                nvinfer1::DataType dtype,
218
                                                const nvinfer1::Dims &dims) {
219 220 221 222
  PADDLE_ENFORCE_EQ(network() != nullptr, true,
                    platform::errors::InvalidArgument(
                        "The TRT network should be initialized first."));
  auto *input = network()->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
223
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
224
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
225
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
226 227 228
  return input;
}

229 230 231
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
  auto *output = layer->getOutput(offset);
232
  SetITensor(name, output);
Y
Yan Chunwei 已提交
233 234
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
235
  PADDLE_ENFORCE(!output->isNetworkInput());
236
  network()->markOutput(*output);
237
  PADDLE_ENFORCE(output->isNetworkOutput());
N
nhzlx 已提交
238 239
}

240 241
void TensorRTEngine::DeclareOutput(const std::string &name) {
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
242 243
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
244
  PADDLE_ENFORCE(!output->isNetworkInput());
245
  network()->markOutput(*output);
L
Luo Tao 已提交
246 247
}

248 249
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
250
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
251
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
252 253 254 255
                    name);
  itensor_map_[name] = tensor;
}

256
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
257
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
258 259 260
  return itensor_map_[name];
}

261 262 263 264
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

265 266 267 268
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
269 270
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
271 272
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
273
  platform::CPUPlace cpu_place;
274 275 276 277 278 279 280 281 282 283 284
  PADDLE_ENFORCE_EQ(
      weight_map.count(name_with_suffix), 0,
      "During TRT Op converter: We set weight %s with the same name "
      "twice into the weight_map",
      name_with_suffix);
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
285 286 287
  return weight_data;
}

288 289
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
290
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
291 292
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
293
  owned_plugin_.emplace_back(plugin);
294
  return network()->addPluginExt(inputs, num_inputs, *plugin);
295 296
}

N
nhzlx 已提交
297 298 299 300 301 302 303
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
304 305 306
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle