tensor.py 63.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
29
from paddle.utils import deprecated
X
xuwei06 已提交
30
import numpy
31
import warnings
32
from .utils import check_shape
Y
Yu Yang 已提交
33 34

__all__ = [
L
li099 已提交
35 36 37
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
38
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
39
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
40 41 42
]


X
xuwei06 已提交
43
def create_tensor(dtype, name=None, persistable=False):
44
    """
W
wangchaochaohu 已提交
45
    Create a variable, which will hold a Tensor with data type dtype.
46 47

    Args:
W
wangchaochaohu 已提交
48 49 50 51
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
52
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
53
            default value is False.
54 55

    Returns:
W
wangchaochaohu 已提交
56
        Variable: The tensor to be created according to dtype.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
62 63
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
64 65 66 67
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
68
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
69 70
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
71 72


73 74
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
75
                     name=None,
76 77 78 79
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
80
	:api_attr: Static Graph
S
swtkiwi 已提交
81

82
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
83 84 85 86 87
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

88 89 90 91 92 93 94
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
95 96 97
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
98
        default_initializer (Initializer, optional): Initializer for the parameter
99 100

    Returns:
101
        The created parameter.
Y
yuyang18 已提交
102 103

    Examples:
104 105
        .. code-block:: python

106 107 108
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
109
    """
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
129
    helper = LayerHelper("create_parameter", **locals())
130
    if attr is None:
X
xuwei06 已提交
131
        attr = ParamAttr(name=name)
132 133
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
134 135 136
                                   default_initializer)


137 138 139 140 141 142 143
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
144
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
145

146 147 148
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
149
                      variable will be filled with it.
150 151
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
152
                           Default: False
153
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
154
                         Default: False
155 156
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
157 158

    Returns:
159
        Variable: The created Variable
F
fengjiayi 已提交
160 161 162 163

    Examples:
        .. code-block:: python

164 165 166
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
167
                                           persistable=True, force_cpu=True, name='new_var')
168
    """
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
186 187
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
188 189 190 191 192
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
193 194 195
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
196

Q
Qiao Longfei 已提交
197 198 199
    return var


200
def cast(x, dtype):
Y
Yu Yang 已提交
201
    """
S
swtkiwi 已提交
202

203 204 205
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
206 207

    Args:
208
        x(Tensor): An input N-D Tensor with data type bool, float16,
209 210
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
211
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
212 213

    Returns:
214
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
215 216 217

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
218

219
            import paddle
220

221 222
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
223
    """
224 225
    check_variable_and_dtype(
        x, 'x',
226 227
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
228 229 230 231 232 233
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
234
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
235 236 237 238 239 240 241 242 243
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


244
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
245
    """
246
    This OP concatenates the input along the axis.
247 248

    Args:
249 250
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
251 252
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
253
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
254
            as ``axis+R``. Default is 0.
255 256 257
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
258 259

    Returns:
260
        Tensor: A Tensor with the same data type as ``input``.
261 262 263

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
264

265
            import paddle.fluid as fluid
266 267
            import numpy as np

268 269 270 271 272 273
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
274 275 276 277
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
278 279
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
280 281
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
282 283 284 285 286 287 288 289
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
290
    """
291 292

    if in_dygraph_mode():
S
songyouwei 已提交
293 294
        if isinstance(axis, Variable):
            axis = axis.numpy()
295
            axis = axis.item(0)
296
        return core.ops.concat(input, 'axis', axis)
297

298 299 300 301 302 303 304 305 306 307 308
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
309
        input = [input]
310
    check_type(axis, 'axis', (int, Variable), 'concat')
311

312 313 314 315 316
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

317
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
318
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
319 320 321

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
322
                "number of the elements must be 1, but received %s." % len(input)
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
342 343 344
    return out


G
Guo Sheng 已提交
345
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
346
    """
G
Guo Sheng 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
397 398

    Args:
G
Guo Sheng 已提交
399 400 401 402 403 404 405
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
406 407

    Returns:
G
Guo Sheng 已提交
408 409 410
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
411 412 413 414

    Examples:
        .. code-block:: python

415
            import paddle.fluid as fluid
416
            import numpy as np
G
Guo Sheng 已提交
417 418 419 420 421 422 423
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
424
    """
425 426 427 428 429 430 431 432 433 434 435
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

436 437 438 439 440
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
441
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
442 443 444
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
445
        type='tensor_array_to_tensor',
L
li099 已提交
446 447 448
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
449 450
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
451 452 453
    return out, out_index


454
def sums(input, out=None):
F
fengjiayi 已提交
455
    """
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
477 478

    Args:
479 480 481 482
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
483 484

    Returns:
485 486
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
487 488

    Examples:
F
fengjiayi 已提交
489
        .. code-block:: python
K
kavyasrinet 已提交
490

491 492 493 494 495 496 497 498 499
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
500

501 502
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
503
    """
504 505 506 507 508 509 510 511 512
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
513 514
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
515 516
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
517 518 519 520
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
521 522 523 524 525
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
526 527 528
    return out


F
fengjiayi 已提交
529
def assign(input, output=None):
530
    """
S
swtkiwi 已提交
531

532
    The OP copies the :attr:`input` to the :attr:`output`.
533

534 535
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
536
            float16, float32, float64, int32 and int64.
537 538
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
539 540

    Returns:
541
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
542 543 544

    Examples:
        .. code-block:: python
545

546
          import paddle
547
          import numpy as np
548 549 550 551 552 553 554 555
          data = paddle.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
          paddle.nn.functional.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.nn.functional.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.nn.functional.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
556
    """
Y
Yu Yang 已提交
557
    helper = LayerHelper('assign', **locals())
558
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
559
    if isinstance(input, Variable):
560 561 562 563
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
564 565 566
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
567
        helper.append_op(
R
robot 已提交
568
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
569 570
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
571 572 573 574
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
575
            value_name = "fp32_values"
576
            values = [float(v) for v in input.flat]
577
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
578
            value_name = "int32_values"
579
            values = [int(v) for v in input.flat]
580 581 582
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
583
        else:
584 585
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
586
                "the data type of 'input' must be bool, float32, int32 or int64, but "
587
                "received %s." % convert_dtype(dtype))
588 589 590
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
591 592 593
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
594 595 596 597 598 599
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
600
                value_name: values
X
xuwei06 已提交
601 602
            })

Y
Yu Yang 已提交
603 604 605
    return output


606
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
607
    """
608
	:alias_main: paddle.fill_constant
609
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
610

W
wangchaochaohu 已提交
611
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
612
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
613

T
tianshuo78520a 已提交
614
    The attribute `stop_gradient` of the created Tensor is set to True.
615 616

    Args:
617 618 619
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
620
        dtype(np.dtype|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
621
            be float16, float32, float64, int32, int64.
622 623 624 625 626 627
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
628 629
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
630 631

    Returns:
632
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
633

634 635 636
    Examples:
        .. code-block:: python

637
          import paddle.fluid as fluid
638
          # attr shape is a list which doesn't contain  Tensor.
639 640
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
641
          # data1=[[5], [5]] data2=[[5], [5]]
642

643
          # attr shape is a list which contains Tensor.
644
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
645
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
646

647
          # attr shape is a Tensor.
648
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
649
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
650
          
651
          # attr value is a Tensor.
W
wangchaochaohu 已提交
652 653
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
654
    """
655

W
wangchaochaohu 已提交
656
    attrs = {'force_cpu': force_cpu}
657
    dtype = convert_dtype(dtype)
658
    if not isinstance(value, Variable):
659
        if dtype in ['int64', 'int32']:
W
wangchaochaohu 已提交
660
            attrs['str_value'] = str(int(value))
661
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
662 663
        else:
            attrs['str_value'] = str(float(value))
664
            attrs['value'] = float(value)
665 666

    if in_dygraph_mode():
667
        shape = utils.convert_shape_to_list(shape)
668 669
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
670 671

        if isinstance(value, Variable):
672
            if dtype in ['int64', 'int32']:
673
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
674
            else:
675
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
676

677 678
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
679 680
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
681 682 683
        out.stop_gradient = True
        return out

684 685 686
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
687 688
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
689 690
        inputs['ValueTensor'] = value

691
    check_shape(shape)
692
    check_dtype(dtype, 'dtype',
693 694 695
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
696

697 698 699 700 701
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
702
    utils.get_shape_tensor_inputs(
703
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
704

Y
Yu Yang 已提交
705
    if out is None:
X
Xin Pan 已提交
706
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
707
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
708 709
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
710
        inputs=inputs,
Y
Yu Yang 已提交
711
        outputs={'Out': [out]},
L
liym27 已提交
712
        attrs=attrs,
M
minqiyang 已提交
713
        stop_gradient=True)
Y
Yu Yang 已提交
714 715 716 717
    out.stop_gradient = True
    return out


718
@deprecated(since='1.8.0', update_to="paddle.fill_constant")
Y
yuyang18 已提交
719
@templatedoc()
Y
Yu Yang 已提交
720 721 722 723 724
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
725 726
                                  output_dim_idx=0,
                                  force_cpu=False):
727
    """
T
tianshuo78520a 已提交
728
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
729 730 731 732
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
733 734

    Args:
W
wangchaochaohu 已提交
735 736 737 738 739 740 741 742 743 744 745
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
746
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
747 748

    Returns:
W
wangchaochaohu 已提交
749
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
750 751 752 753 754

    Examples:

        .. code-block:: python

755
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
756
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
757
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
758
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
759

760
    """
Y
Yu Yang 已提交
761
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
762
    out = helper.create_variable_for_type_inference(dtype=dtype)
763 764 765 766 767 768
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
769
        'force_cpu': force_cpu
770 771 772 773 774
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
775 776 777 778
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
779
        attrs=attrs)
Y
Yu Yang 已提交
780 781 782 783
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
784 785
def argmin(x, axis=0):
    """
786 787 788
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
789

S
sneaxiy 已提交
790 791
    **argmin**

792 793
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
794 795

    Args:
796 797 798 799 800
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
801

S
sneaxiy 已提交
802
    Returns:
803
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
804

S
sneaxiy 已提交
805 806
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
807

808
            import paddle.fluid as fluid
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
836
    """
837 838 839
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
840
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
841
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
842 843 844 845 846
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
847
    out.stop_gradient = True
S
sneaxiy 已提交
848 849 850 851 852 853 854
    return out


def argmax(x, axis=0):
    """
    **argmax**

855 856
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
857 858

    Args:
859 860 861 862 863
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
864

S
sneaxiy 已提交
865
    Returns:
866
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
867

S
sneaxiy 已提交
868 869
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
870

871
            import paddle.fluid as fluid
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
899
    """
900 901 902
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
903
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
904
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
905 906 907 908 909
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
910
    out.stop_gradient = True
S
sneaxiy 已提交
911 912 913
    return out


914
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
915
    """
916 917 918
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
919

920 921 922
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
923 924

    Args:
925 926 927 928 929
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
930 931 932
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
933 934 935
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
936 937

    Returns:
938 939 940
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
941 942 943 944

    Examples:
        .. code-block:: python

945
            import paddle.fluid as fluid
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
987
    """
988 989 990
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
991
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
992 993 994 995
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
996 997 998 999
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1000
                 'Indices': ids},
1001 1002
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1003 1004 1005
    return out, ids


Y
Yang Yu 已提交
1006
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1007
    """
1008 1009
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1010

1011
    Parameters:
1012
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1013
        dtype (np.dtype|str): Data type of output Tensor, it supports
1014
            bool, float16, float32, float64, int32 and int64.
1015 1016
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1017
            Default: False.
1018 1019

    Returns:
1020
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1021 1022 1023 1024

    Examples:
        .. code-block:: python

1025
          import paddle.fluid as fluid
1026 1027 1028 1029 1030
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1031 1032 1033 1034
    """
    return fill_constant(value=1.0, **locals())


1035
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1036
    """
1037 1038
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1039

1040
    Parameters:
1041
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1042
        dtype (np.dtype|str): Data type of output Tensor, it supports
1043
            bool, float16, float32, float64, int32 and int64.
1044 1045
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1046
            Default: False.
1047 1048
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1049 1050

    Returns:
1051
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1052 1053 1054 1055

    Examples:
        .. code-block:: python

1056
          import paddle.fluid as fluid
1057
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1058 1059 1060 1061
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1062 1063
    """
    return fill_constant(value=0.0, **locals())
1064 1065


F
fengjiayi 已提交
1066 1067
def reverse(x, axis):
    """
1068 1069 1070
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1071

1072
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1073

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1098
    Parameters:
1099 1100
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1101 1102
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1103 1104
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1105 1106

    Returns:
1107
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1108 1109 1110 1111

    Examples:
        .. code-block:: python

1112
          import paddle.fluid as fluid
1113 1114 1115 1116
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1127
    """
1128 1129 1130
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1131 1132 1133
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1134
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1135 1136
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1137
        inputs={'X': x},
F
fengjiayi 已提交
1138 1139 1140 1141 1142
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1143 1144 1145 1146 1147 1148 1149
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1150 1151 1152
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1168 1169
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1170
        file_path(str): The file path where variables will be saved.
1171
        overwrite(bool): Whether or not cover the given file when it has already
1172 1173
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1174 1175 1176 1177 1178 1179 1180 1181

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1182
            import paddle.fluid as fluid
1183 1184 1185 1186 1187 1188 1189
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1202
    Loads a list of variable from a single file.
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1214 1215 1216 1217 1218 1219 1220


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1221
       x (Tensor): The Tensor to be checked.
1222 1223

    Returns:
S
Steffy-zxf 已提交
1224
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1225 1226 1227 1228
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1229 1230 1231 1232
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
          res = paddle.has_inf(data)
          # [False]
1233

1234
    """
S
Steffy-zxf 已提交
1235 1236 1237
    if in_dygraph_mode():
        return core.ops.isinf(x)

1238
    check_type(x, 'x', (Variable), 'has_inf')
1239
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1240
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1241 1242 1243 1244 1245 1246 1247 1248 1249
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1250
       x (Tensor): The Tensor to be checked.
1251 1252

    Returns:
S
Steffy-zxf 已提交
1253
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1254 1255 1256 1257
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1258 1259 1260 1261
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
          res = paddle.has_nan(data)
          # [False]
1262

1263
    """
S
Steffy-zxf 已提交
1264 1265 1266
    if in_dygraph_mode():
        return core.ops.isnan(x)

1267
    check_type(x, 'x', (Variable), 'has_nan')
1268
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1269
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1270 1271 1272 1273 1274 1275
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1276 1277 1278
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1279

1280 1281 1282 1283 1284 1285 1286 1287
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1288 1289 1290 1291 1292

    Examples:

        .. code-block:: python

1293
            import paddle.fluid as fluid
1294 1295 1296
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1297
            out = fluid.layers.isfinite(var)
1298
    """
1299 1300
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1301
    helper = LayerHelper("isfinite", **locals())
1302

1303
    out = helper.create_variable_for_type_inference(dtype='bool')
1304 1305
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1306 1307


1308
def range(start, end, step, dtype, name=None):
W
whs 已提交
1309
    """
1310
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1311

1312 1313
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1314

1315 1316
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1317

L
Liufang Sang 已提交
1318
    Parameters:
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1342 1343 1344 1345 1346

    examples:

        .. code-block:: python

1347
            import paddle.fluid as fluid
W
whs 已提交
1348

1349 1350
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1351

1352 1353 1354 1355 1356 1357 1358
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1359

W
whs 已提交
1360
    if not isinstance(start, Variable):
1361 1362
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1363 1364
    elif start.dtype != dtype:
        start = cast(start, dtype)
1365

W
whs 已提交
1366
    if not isinstance(end, Variable):
1367 1368
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1369 1370
    elif end.dtype != dtype:
        end = cast(end, dtype)
1371

W
whs 已提交
1372
    if not isinstance(step, Variable):
1373 1374
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1375 1376
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1377

1378 1379
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1380

1381 1382 1383 1384
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1385 1386 1387 1388 1389
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1390
        outputs={'Out': out})
1391
    out.stop_gradient = True
W
whs 已提交
1392
    return out
Z
zhoukunsheng 已提交
1393 1394


1395
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1396
    """
1397
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1398 1399

    Args:
1400 1401 1402 1403
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1404
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1405
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1406
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1407
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1408 1409
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1410 1411

    Returns:
1412
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1413 1414
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1415

Z
zhoukunsheng 已提交
1416
    Examples:
Z
zhoukunsheng 已提交
1417 1418
        .. code-block:: python

1419 1420 1421
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1422 1423

    """
1424 1425
    if dtype is None:
        dtype = 'float32'
1426 1427 1428
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1429 1430
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1431 1432
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1433
    if not isinstance(start, Variable):
1434 1435
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1436
    if not isinstance(stop, Variable):
1437 1438
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1439
    if not isinstance(num, Variable):
1440 1441
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1442
    if in_dygraph_mode():
1443 1444
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1445 1446 1447

    helper = LayerHelper("linspace", **locals())

1448 1449 1450
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1451
    if isinstance(start, Variable):
1452 1453
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1454 1455
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1456

1457
    if isinstance(stop, Variable):
1458 1459
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1460 1461 1462 1463 1464 1465
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1466 1467 1468 1469 1470 1471 1472 1473
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1474 1475

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1476 1477 1478

    helper.append_op(
        type='linspace',
1479 1480 1481 1482
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1483 1484
        outputs={'Out': [out]})
    return out
1485 1486


Z
zhoukunsheng 已提交
1487 1488
def zeros_like(x, out=None):
    """
1489
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1490 1491 1492
    with `x`.

    Args:
1493 1494 1495 1496 1497 1498
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1499 1500

    Returns:
1501 1502 1503
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1504 1505 1506 1507

    Examples:
        .. code-block:: python

1508
          import paddle.fluid as fluid
1509
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1510 1511
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1512 1513
    """

1514 1515
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1516 1517 1518
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1519 1520 1521
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1522
            'zeros_like')
1523

Z
zhoukunsheng 已提交
1524 1525 1526 1527
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1528 1529


1530
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1531 1532
def diag(diagonal):
    """
1533 1534 1535
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1536

1537
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1538 1539

    Args:
1540 1541
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1542 1543

    Returns:
1544 1545
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1546 1547 1548 1549 1550 1551 1552

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1553 1554 1555

          import paddle.fluid as fluid
          import numpy as np
1556 1557 1558
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1559 1560

    """
1561 1562 1563
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1576 1577


1578 1579 1580 1581 1582
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1583
    """
1584
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1585 1586 1587

    Args:
        num_rows(int): the number of rows in each batch tensor.
1588 1589
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1590 1591
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1592
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1593 1594 1595 1596
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1597 1598

    Returns:
1599
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1600 1601 1602 1603 1604

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1605 1606
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1607
          #  [0, 1, 0]
1608 1609
          #  [0, 0, 1]]

1610
          data = fluid.layers.eye(2, 3, dtype='int32')
1611
          # [[1, 0, 0]
1612
          #  [0, 1, 0]]
1613 1614

          data = fluid.layers.eye(2, batch_shape=[3])
1615 1616 1617 1618 1619
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1620 1621
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1622 1623 1624 1625 1626
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1649 1650

    if batch_shape is not None:
1651 1652 1653 1654 1655 1656 1657
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1658 1659
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1660
        for batch_val in (batch_shape):
1661 1662
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1663 1664 1665 1666 1667 1668

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1669 1670 1671
    return out


Z
zhoukunsheng 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1684
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1695 1696
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1697 1698 1699 1700

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1701 1702 1703 1704
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1705 1706 1707 1708 1709 1710
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1711 1712 1713 1714 1715 1716


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)