test_cross_entropy_op.py 12.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17
import unittest
18
import numpy as np
C
chengduo 已提交
19
import paddle.fluid.core as core
20
from op_test import OpTest, randomize_probability
21 22
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
Q
Qiao Longfei 已提交
23 24


C
chengduo 已提交
25
class TestCrossEntropyOp(OpTest):
C
caoying03 已提交
26
    """Test cross-entropy with discrete one-hot labels.
27 28
    """

Q
Qiao Longfei 已提交
29
    def setUp(self):
30
        self.op_type = "cross_entropy"
C
chengduo 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        self.soft_label = False
        self.ignore_index = -100
        self.dtype = np.float64
        self.batch_size = 30
        self.class_num = 10

        self.init_dtype_type()
        self.init_attr_type()
        self.init_bs_class_num()
        self.init_x()
        self.init_label()
        self.get_cross_entropy()

        self.inputs = {"X": self.x, "Label": self.label}
        self.outputs = {"Y": self.cross_entropy}
        self.attrs = {
            "soft_label": self.soft_label,
            "ignore_index": self.ignore_index
        }

    def init_x(self):
        self.x = randomize_probability(
            self.batch_size, self.class_num, dtype=self.dtype)

    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size, 1), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label[i][0]])]
             for i in range(self.x.shape[0])],
            dtype="float64")
C
caoying03 已提交
64

C
chengduo 已提交
65 66
    def init_attr_type(self):
        pass
67

C
chengduo 已提交
68 69
    def init_dtype_type(self):
        pass
C
caoying03 已提交
70

C
chengduo 已提交
71 72
    def init_bs_class_num(self):
        pass
Q
Qiao Longfei 已提交
73

74
    def test_check_output(self):
Q
qijun 已提交
75
        self.check_output()
Q
Qiao Longfei 已提交
76

77
    def test_check_grad(self):
78
        self.check_grad(["X"], "Y", numeric_grad_delta=0.001)
79

Y
Yan Chunwei 已提交
80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class TestCrossEntropyOpRemoveLastDim(TestCrossEntropyOp):
    """Test cross-entropy with discrete one-hot labels with shape [batch_size]
    """

    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [
                -np.log(self.x[i][self.label[i]])
                for i in range(self.x.shape[0])
            ],
            dtype="float64")


C
chengduo 已提交
98
class TestCrossEntropyOp2(TestCrossEntropyOp):
C
caoying03 已提交
99
    """Test cross-entropy with vectorized soft labels.
100 101
    """

C
chengduo 已提交
102 103 104 105
    def init_label(self):
        self.label = np.random.uniform(
            0.1, 1.0, [self.batch_size, self.class_num]).astype(self.dtype)
        self.label /= self.label.sum(axis=1, keepdims=True)
C
caoying03 已提交
106

C
chengduo 已提交
107 108 109
    def get_cross_entropy(self):
        self.cross_entropy = (-self.label * np.log(self.x)).sum(
            axis=1, keepdims=True).astype(self.dtype)
C
caoying03 已提交
110

C
chengduo 已提交
111 112
    def init_attr_type(self):
        self.soft_label = True
113

C
chengduo 已提交
114 115 116 117 118 119
    def init_dtype_type(self):
        self.dtype = np.float32

    def init_bs_class_num(self):
        self.batch_size = 5
        self.class_num = 37
120 121

    def test_check_grad(self):
122 123
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
124 125


C
chengduo 已提交
126
class TestCrossEntropyOp3(TestCrossEntropyOp):
C
caoying03 已提交
127
    """Test cross-entropy with vectorized one-hot representation of labels.
128 129
    """

C
chengduo 已提交
130 131 132 133 134
    def init_label(self):
        self.label_index = np.random.randint(0, self.class_num,
                                             (self.batch_size))
        self.label = np.zeros(self.x.shape).astype(self.dtype)
        self.label[np.arange(self.batch_size), self.label_index] = 1
C
caoying03 已提交
135

C
chengduo 已提交
136 137 138 139
    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label_index[i]])]
             for i in range(self.x.shape[0])]).astype(self.dtype)
C
caoying03 已提交
140

C
chengduo 已提交
141 142
    def init_attr_type(self):
        self.soft_label = True
C
caoying03 已提交
143

C
chengduo 已提交
144 145
    def init_dtype_type(self):
        self.dtype = np.float32
146

C
chengduo 已提交
147 148 149
    def init_bs_class_num(self):
        self.batch_size = 5
        self.class_num = 17
150 151

    def test_check_grad(self):
152 153
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
154 155


C
chengduo 已提交
156
class TestCrossEntropyOp4(TestCrossEntropyOp):
157 158 159
    """Test high rank tensor cross-entropy with discrete one-hot labels.
    """

C
chengduo 已提交
160 161 162 163 164 165
    def init_x(self):
        self.shape = [10, 2, 4]
        self.ins_num = np.prod(np.array(self.shape))
        self.X_2d = randomize_probability(self.ins_num,
                                          self.class_num).astype(self.dtype)
        self.x = self.X_2d.reshape(self.shape + [self.class_num])
166

C
chengduo 已提交
167 168 169 170
    def init_label(self):
        self.label_2d = np.random.randint(
            0, self.class_num, (self.ins_num, 1), dtype="int64")
        self.label = self.label_2d.reshape(self.shape + [1])
171

C
chengduo 已提交
172
    def get_cross_entropy(self):
173
        cross_entropy_2d = np.asmatrix(
C
chengduo 已提交
174 175 176 177
            [[-np.log(self.X_2d[i][self.label_2d[i][0]])]
             for i in range(self.X_2d.shape[0])]).astype(self.dtype)
        self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape +
                                                                [1])
178

C
chengduo 已提交
179 180
    def init_attr_type(self):
        self.soft_label = False
181

C
chengduo 已提交
182 183
    def init_dtype_type(self):
        self.dtype = np.float64
184

C
chengduo 已提交
185 186
    def init_bs_class_num(self):
        self.class_num = 10
187 188


189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
class TestCrossEntropyOp4RemoveLastDim(TestCrossEntropyOp4):
    """Test high rank tensor cross-entropy with discrete one-hot labels with shape [batch_size]
    """

    def init_label(self):
        self.label_2d = np.random.randint(
            0, self.class_num, (self.ins_num, 1), dtype="int64")
        self.label = self.label_2d.reshape(self.shape)

    def get_cross_entropy(self):
        cross_entropy_2d = np.asmatrix(
            [[-np.log(self.X_2d[i][self.label_2d[i][0]])]
             for i in range(self.X_2d.shape[0])]).astype(self.dtype)
        self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape)


C
chengduo 已提交
205
class TestCrossEntropyOp5(TestCrossEntropyOp):
206 207 208
    """Test high rank tensor cross-entropy with vectorized soft labels.
    """

C
chengduo 已提交
209 210 211 212 213 214
    def init_x(self):
        self.shape = [4, 3]
        self.ins_num = np.prod(np.array(self.shape))
        self.X_2d = randomize_probability(self.ins_num,
                                          self.class_num).astype(self.dtype)
        self.x = self.X_2d.reshape(self.shape + [self.class_num])
215

C
chengduo 已提交
216 217 218 219 220
    def init_label(self):
        self.label_2d = np.random.uniform(
            0.1, 1.0, [self.ins_num, self.class_num]).astype(self.dtype)
        self.label_2d /= self.label_2d.sum(axis=1, keepdims=True)
        self.label = self.label_2d.reshape(self.shape + [self.class_num])
221

C
chengduo 已提交
222 223 224 225 226
    def get_cross_entropy(self):
        cross_entropy_2d = (-self.label_2d * np.log(self.X_2d)).sum(
            axis=1, keepdims=True).astype(self.dtype)
        self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape +
                                                                [1])
227

C
chengduo 已提交
228 229
    def init_attr_type(self):
        self.soft_label = True
230

C
chengduo 已提交
231 232 233 234 235
    def init_dtype_type(self):
        self.dtype = np.float32

    def init_bs_class_num(self):
        self.class_num = 37
236 237 238 239 240 241

    def test_check_grad(self):
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)


C
chengduo 已提交
242
class TestCrossEntropyOp6(TestCrossEntropyOp):
243 244 245
    """Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
    """

C
chengduo 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    def init_x(self):
        self.shape = [4, 3, 2]
        self.ins_num = np.prod(np.array(self.shape))
        self.X_2d = randomize_probability(self.ins_num,
                                          self.class_num).astype(self.dtype)
        self.x = self.X_2d.reshape(self.shape + [self.class_num])

    def init_label(self):
        self.label_index_2d = np.random.randint(
            0, self.class_num, (self.ins_num), dtype="int64")
        label_2d = np.zeros(self.X_2d.shape)
        label_2d[np.arange(self.ins_num), self.label_index_2d] = 1
        self.label = label_2d.reshape(self.shape + [self.class_num]).astype(
            self.dtype)

    def get_cross_entropy(self):
262
        cross_entropy_2d = np.asmatrix(
C
chengduo 已提交
263 264 265 266
            [[-np.log(self.X_2d[i][self.label_index_2d[i]])]
             for i in range(self.X_2d.shape[0])])
        self.cross_entropy = np.array(cross_entropy_2d).reshape(
            self.shape + [1]).astype(self.dtype)
267

C
chengduo 已提交
268 269
    def init_attr_type(self):
        self.soft_label = True
270

C
chengduo 已提交
271 272
    def init_dtype_type(self):
        self.dtype = np.float32
273

C
chengduo 已提交
274 275
    def init_bs_class_num(self):
        self.class_num = 17
276 277 278 279 280 281

    def test_check_grad(self):
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)


C
chengduo 已提交
282
class TestCrossEntropyOp7(TestCrossEntropyOp):
283 284 285
    """Test cross-entropy with ignore index.
    """

C
chengduo 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size, 1), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label[i][0]])]
             if self.label[i][0] != self.ignore_index else [0]
             for i in range(self.x.shape[0])]).astype(self.dtype)

    def init_attr_type(self):
        self.soft_label = False
        self.ignore_index = 3

    def init_dtype_type(self):
        self.dtype = np.float64

    def init_bs_class_num(self):
        self.batch_size = 30
        self.class_num = 10


308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
class TestCrossEntropyOp7RemoveLastDim(TestCrossEntropyOp7):
    """Test cross-entropy with ignore index with shape [batch_size].
    """

    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label[i]])]
             if self.label[i] != self.ignore_index else [0]
             for i in range(self.x.shape[0])]).astype(self.dtype)
        self.cross_entropy = np.array(self.cross_entropy).reshape(
            [self.batch_size]).astype(self.dtype)


C
chengduo 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
# Add Fp16 test
def create_test_class(parent, cls_name):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCrossEntropyFP16Op(parent):
        def init_dtype_type(self):
            return np.float16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-1)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X'], 'Y', max_relative_error=0.9)

    cls_name = "{0}".format(cls_name)
    TestCrossEntropyFP16Op.__name__ = cls_name
    globals()[cls_name] = TestCrossEntropyFP16Op


create_test_class(TestCrossEntropyOp, "TestCrossEntropyF16Op")
#create_test_class(TestCrossEntropyOp2, "TestCrossEntropyF16Op2")
create_test_class(TestCrossEntropyOp3, "TestCrossEntropyF16Op3")
create_test_class(TestCrossEntropyOp4, "TestCrossEntropyF16Op4")
353 354
create_test_class(TestCrossEntropyOp4RemoveLastDim,
                  "TestCrossEntropyF16Op4RemoveLastDim")
C
chengduo 已提交
355 356 357
#create_test_class(TestCrossEntropyOp5, "TestCrossEntropyF16Op5")
create_test_class(TestCrossEntropyOp6, "TestCrossEntropyF16Op6")
create_test_class(TestCrossEntropyOp7, "TestCrossEntropyF16Op7")
358 359
create_test_class(TestCrossEntropyOp7RemoveLastDim,
                  "TestCrossEntropyF16Op7RemoveLastDim")
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

class TestCrossEntropyOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of cross_entropy must be Variable.
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                lab1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
                fluid.layers.cross_entropy(x1, lab1)

            self.assertRaises(TypeError, test_Variable)

            def test_dtype():
                # the input dtype of cross_entropy must be float16 or float32 or float64
                # float16 only can be set on GPU place
                x2 = fluid.layers.data(
                    name='x2', shape=[3, 4, 5, 6], dtype="int32")
                lab2 = fluid.layers.data(
                    name='lab2', shape=[3, 4, 5, 6], dtype="int32")
                fluid.layers.cross_entropy(x2, lab2)

            self.assertRaises(TypeError, test_dtype)


Q
Qiao Longfei 已提交
388 389
if __name__ == "__main__":
    unittest.main()