test_cross_entropy_op.py 11.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
Qiao Longfei 已提交
17
import unittest
18
import numpy as np
C
chengduo 已提交
19
import paddle.fluid.core as core
20
from op_test import OpTest, randomize_probability
Q
Qiao Longfei 已提交
21 22


C
chengduo 已提交
23
class TestCrossEntropyOp(OpTest):
C
caoying03 已提交
24
    """Test cross-entropy with discrete one-hot labels.
25 26
    """

Q
Qiao Longfei 已提交
27
    def setUp(self):
28
        self.op_type = "cross_entropy"
C
chengduo 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        self.soft_label = False
        self.ignore_index = -100
        self.dtype = np.float64
        self.batch_size = 30
        self.class_num = 10

        self.init_dtype_type()
        self.init_attr_type()
        self.init_bs_class_num()
        self.init_x()
        self.init_label()
        self.get_cross_entropy()

        self.inputs = {"X": self.x, "Label": self.label}
        self.outputs = {"Y": self.cross_entropy}
        self.attrs = {
            "soft_label": self.soft_label,
            "ignore_index": self.ignore_index
        }

    def init_x(self):
        self.x = randomize_probability(
            self.batch_size, self.class_num, dtype=self.dtype)

    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size, 1), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label[i][0]])]
             for i in range(self.x.shape[0])],
            dtype="float64")
C
caoying03 已提交
62

C
chengduo 已提交
63 64
    def init_attr_type(self):
        pass
65

C
chengduo 已提交
66 67
    def init_dtype_type(self):
        pass
C
caoying03 已提交
68

C
chengduo 已提交
69 70
    def init_bs_class_num(self):
        pass
Q
Qiao Longfei 已提交
71

72
    def test_check_output(self):
Q
qijun 已提交
73
        self.check_output()
Q
Qiao Longfei 已提交
74

75
    def test_check_grad(self):
76
        self.check_grad(["X"], "Y", numeric_grad_delta=0.001)
77

Y
Yan Chunwei 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class TestCrossEntropyOpRemoveLastDim(TestCrossEntropyOp):
    """Test cross-entropy with discrete one-hot labels with shape [batch_size]
    """

    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [
                -np.log(self.x[i][self.label[i]])
                for i in range(self.x.shape[0])
            ],
            dtype="float64")


C
chengduo 已提交
96
class TestCrossEntropyOp2(TestCrossEntropyOp):
C
caoying03 已提交
97
    """Test cross-entropy with vectorized soft labels.
98 99
    """

C
chengduo 已提交
100 101 102 103
    def init_label(self):
        self.label = np.random.uniform(
            0.1, 1.0, [self.batch_size, self.class_num]).astype(self.dtype)
        self.label /= self.label.sum(axis=1, keepdims=True)
C
caoying03 已提交
104

C
chengduo 已提交
105 106 107
    def get_cross_entropy(self):
        self.cross_entropy = (-self.label * np.log(self.x)).sum(
            axis=1, keepdims=True).astype(self.dtype)
C
caoying03 已提交
108

C
chengduo 已提交
109 110
    def init_attr_type(self):
        self.soft_label = True
111

C
chengduo 已提交
112 113 114 115 116 117
    def init_dtype_type(self):
        self.dtype = np.float32

    def init_bs_class_num(self):
        self.batch_size = 5
        self.class_num = 37
118 119

    def test_check_grad(self):
120 121
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
122 123


C
chengduo 已提交
124
class TestCrossEntropyOp3(TestCrossEntropyOp):
C
caoying03 已提交
125
    """Test cross-entropy with vectorized one-hot representation of labels.
126 127
    """

C
chengduo 已提交
128 129 130 131 132
    def init_label(self):
        self.label_index = np.random.randint(0, self.class_num,
                                             (self.batch_size))
        self.label = np.zeros(self.x.shape).astype(self.dtype)
        self.label[np.arange(self.batch_size), self.label_index] = 1
C
caoying03 已提交
133

C
chengduo 已提交
134 135 136 137
    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label_index[i]])]
             for i in range(self.x.shape[0])]).astype(self.dtype)
C
caoying03 已提交
138

C
chengduo 已提交
139 140
    def init_attr_type(self):
        self.soft_label = True
C
caoying03 已提交
141

C
chengduo 已提交
142 143
    def init_dtype_type(self):
        self.dtype = np.float32
144

C
chengduo 已提交
145 146 147
    def init_bs_class_num(self):
        self.batch_size = 5
        self.class_num = 17
148 149

    def test_check_grad(self):
150 151
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)
152 153


C
chengduo 已提交
154
class TestCrossEntropyOp4(TestCrossEntropyOp):
155 156 157
    """Test high rank tensor cross-entropy with discrete one-hot labels.
    """

C
chengduo 已提交
158 159 160 161 162 163
    def init_x(self):
        self.shape = [10, 2, 4]
        self.ins_num = np.prod(np.array(self.shape))
        self.X_2d = randomize_probability(self.ins_num,
                                          self.class_num).astype(self.dtype)
        self.x = self.X_2d.reshape(self.shape + [self.class_num])
164

C
chengduo 已提交
165 166 167 168
    def init_label(self):
        self.label_2d = np.random.randint(
            0, self.class_num, (self.ins_num, 1), dtype="int64")
        self.label = self.label_2d.reshape(self.shape + [1])
169

C
chengduo 已提交
170
    def get_cross_entropy(self):
171
        cross_entropy_2d = np.asmatrix(
C
chengduo 已提交
172 173 174 175
            [[-np.log(self.X_2d[i][self.label_2d[i][0]])]
             for i in range(self.X_2d.shape[0])]).astype(self.dtype)
        self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape +
                                                                [1])
176

C
chengduo 已提交
177 178
    def init_attr_type(self):
        self.soft_label = False
179

C
chengduo 已提交
180 181
    def init_dtype_type(self):
        self.dtype = np.float64
182

C
chengduo 已提交
183 184
    def init_bs_class_num(self):
        self.class_num = 10
185 186


187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class TestCrossEntropyOp4RemoveLastDim(TestCrossEntropyOp4):
    """Test high rank tensor cross-entropy with discrete one-hot labels with shape [batch_size]
    """

    def init_label(self):
        self.label_2d = np.random.randint(
            0, self.class_num, (self.ins_num, 1), dtype="int64")
        self.label = self.label_2d.reshape(self.shape)

    def get_cross_entropy(self):
        cross_entropy_2d = np.asmatrix(
            [[-np.log(self.X_2d[i][self.label_2d[i][0]])]
             for i in range(self.X_2d.shape[0])]).astype(self.dtype)
        self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape)


C
chengduo 已提交
203
class TestCrossEntropyOp5(TestCrossEntropyOp):
204 205 206
    """Test high rank tensor cross-entropy with vectorized soft labels.
    """

C
chengduo 已提交
207 208 209 210 211 212
    def init_x(self):
        self.shape = [4, 3]
        self.ins_num = np.prod(np.array(self.shape))
        self.X_2d = randomize_probability(self.ins_num,
                                          self.class_num).astype(self.dtype)
        self.x = self.X_2d.reshape(self.shape + [self.class_num])
213

C
chengduo 已提交
214 215 216 217 218
    def init_label(self):
        self.label_2d = np.random.uniform(
            0.1, 1.0, [self.ins_num, self.class_num]).astype(self.dtype)
        self.label_2d /= self.label_2d.sum(axis=1, keepdims=True)
        self.label = self.label_2d.reshape(self.shape + [self.class_num])
219

C
chengduo 已提交
220 221 222 223 224
    def get_cross_entropy(self):
        cross_entropy_2d = (-self.label_2d * np.log(self.X_2d)).sum(
            axis=1, keepdims=True).astype(self.dtype)
        self.cross_entropy = np.array(cross_entropy_2d).reshape(self.shape +
                                                                [1])
225

C
chengduo 已提交
226 227
    def init_attr_type(self):
        self.soft_label = True
228

C
chengduo 已提交
229 230 231 232 233
    def init_dtype_type(self):
        self.dtype = np.float32

    def init_bs_class_num(self):
        self.class_num = 37
234 235 236 237 238 239

    def test_check_grad(self):
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)


C
chengduo 已提交
240
class TestCrossEntropyOp6(TestCrossEntropyOp):
241 242 243
    """Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
    """

C
chengduo 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    def init_x(self):
        self.shape = [4, 3, 2]
        self.ins_num = np.prod(np.array(self.shape))
        self.X_2d = randomize_probability(self.ins_num,
                                          self.class_num).astype(self.dtype)
        self.x = self.X_2d.reshape(self.shape + [self.class_num])

    def init_label(self):
        self.label_index_2d = np.random.randint(
            0, self.class_num, (self.ins_num), dtype="int64")
        label_2d = np.zeros(self.X_2d.shape)
        label_2d[np.arange(self.ins_num), self.label_index_2d] = 1
        self.label = label_2d.reshape(self.shape + [self.class_num]).astype(
            self.dtype)

    def get_cross_entropy(self):
260
        cross_entropy_2d = np.asmatrix(
C
chengduo 已提交
261 262 263 264
            [[-np.log(self.X_2d[i][self.label_index_2d[i]])]
             for i in range(self.X_2d.shape[0])])
        self.cross_entropy = np.array(cross_entropy_2d).reshape(
            self.shape + [1]).astype(self.dtype)
265

C
chengduo 已提交
266 267
    def init_attr_type(self):
        self.soft_label = True
268

C
chengduo 已提交
269 270
    def init_dtype_type(self):
        self.dtype = np.float32
271

C
chengduo 已提交
272 273
    def init_bs_class_num(self):
        self.class_num = 17
274 275 276 277 278 279

    def test_check_grad(self):
        self.check_grad(
            ["X"], "Y", max_relative_error=0.05, numeric_grad_delta=0.001)


C
chengduo 已提交
280
class TestCrossEntropyOp7(TestCrossEntropyOp):
281 282 283
    """Test cross-entropy with ignore index.
    """

C
chengduo 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size, 1), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label[i][0]])]
             if self.label[i][0] != self.ignore_index else [0]
             for i in range(self.x.shape[0])]).astype(self.dtype)

    def init_attr_type(self):
        self.soft_label = False
        self.ignore_index = 3

    def init_dtype_type(self):
        self.dtype = np.float64

    def init_bs_class_num(self):
        self.batch_size = 30
        self.class_num = 10


306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
class TestCrossEntropyOp7RemoveLastDim(TestCrossEntropyOp7):
    """Test cross-entropy with ignore index with shape [batch_size].
    """

    def init_label(self):
        self.label = np.random.randint(
            0, self.class_num, (self.batch_size), dtype="int64")

    def get_cross_entropy(self):
        self.cross_entropy = np.asmatrix(
            [[-np.log(self.x[i][self.label[i]])]
             if self.label[i] != self.ignore_index else [0]
             for i in range(self.x.shape[0])]).astype(self.dtype)
        self.cross_entropy = np.array(self.cross_entropy).reshape(
            [self.batch_size]).astype(self.dtype)


C
chengduo 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
# Add Fp16 test
def create_test_class(parent, cls_name):
    @unittest.skipIf(not core.is_compiled_with_cuda(),
                     "core is not compiled with CUDA")
    class TestCrossEntropyFP16Op(parent):
        def init_dtype_type(self):
            return np.float16

        def test_check_output(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=2e-1)

        def test_check_grad(self):
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_grad_with_place(
                    place, ['X'], 'Y', max_relative_error=0.9)

    cls_name = "{0}".format(cls_name)
    TestCrossEntropyFP16Op.__name__ = cls_name
    globals()[cls_name] = TestCrossEntropyFP16Op


create_test_class(TestCrossEntropyOp, "TestCrossEntropyF16Op")
#create_test_class(TestCrossEntropyOp2, "TestCrossEntropyF16Op2")
create_test_class(TestCrossEntropyOp3, "TestCrossEntropyF16Op3")
create_test_class(TestCrossEntropyOp4, "TestCrossEntropyF16Op4")
351 352
create_test_class(TestCrossEntropyOp4RemoveLastDim,
                  "TestCrossEntropyF16Op4RemoveLastDim")
C
chengduo 已提交
353 354 355
#create_test_class(TestCrossEntropyOp5, "TestCrossEntropyF16Op5")
create_test_class(TestCrossEntropyOp6, "TestCrossEntropyF16Op6")
create_test_class(TestCrossEntropyOp7, "TestCrossEntropyF16Op7")
356 357
create_test_class(TestCrossEntropyOp7RemoveLastDim,
                  "TestCrossEntropyF16Op7RemoveLastDim")
358

Q
Qiao Longfei 已提交
359 360
if __name__ == "__main__":
    unittest.main()