未验证 提交 71853ab1 编写于 作者: L lvmengsi 提交者: GitHub

add error log for python api and c++ (#20061) (#20186)

* add error log
上级 87a0a45d
......@@ -58,8 +58,18 @@ void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
const DataLayout data_layout = framework::StringToDataLayout(
ctx->Attrs().Get<std::string>("data_layout"));
PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
"Input X must have 2 to 5 dimensions.");
PADDLE_ENFORCE_GE(
x_dims.size(), 2,
"ShapeError: the dimension of input X must greater than or equal to 2."
"But received: the shape of input X = [%s], the dimension of input X ="
"[%d]",
x_dims, x_dims.size());
PADDLE_ENFORCE_LE(
x_dims.size(), 5,
"ShapeError: the dimension of input X must smaller than or equal to 5."
"But received: the shape of input X = [%s], the dimension of input X ="
"[%d]",
x_dims, x_dims.size());
const int64_t C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
......@@ -68,8 +78,16 @@ void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
auto scale_dim = ctx->GetInputDim("Scale");
auto bias_dim = ctx->GetInputDim("Bias");
PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);
PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL);
PADDLE_ENFORCE_EQ(scale_dim.size(), 1UL,
"ShapeError: the dimension of scale must equal to 1."
"But received: the shape of scale is [%s], the dimension "
"of scale is [%d]",
scale_dim, scale_dim.size());
PADDLE_ENFORCE_EQ(
bias_dim.size(), 1UL,
"ShapeError: the dimension of bias must equal to 1."
"But received: the shape of bias is [%s],the dimension of bias is [%d]",
bias_dim, bias_dim.size());
bool check = true;
if ((!ctx->IsRuntime()) && (framework::product(scale_dim) <= 0 ||
......@@ -78,8 +96,14 @@ void BatchNormOp::InferShape(framework::InferShapeContext *ctx) const {
}
if (check) {
PADDLE_ENFORCE_EQ(scale_dim[0], C);
PADDLE_ENFORCE_EQ(scale_dim[0], C);
PADDLE_ENFORCE_EQ(scale_dim[0], C,
"ShapeError: the shape of scale must equal to [%d]"
"But received: the shape of scale is [%d]",
C, scale_dim[0]);
PADDLE_ENFORCE_EQ(bias_dim[0], C,
"ShapeError: the shape of bias must equal to [%d]"
"But received: the shape of bias is [%d]",
C, bias_dim[0]);
}
ctx->SetOutputDim("Y", x_dims);
ctx->SetOutputDim("MeanOut", {C});
......
......@@ -51,25 +51,49 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
"Conv intput should be 4-D or 5-D tensor, get %u",
in_dims.size());
"ShapeError: Conv input should be 4-D or 5-D tensor. But "
"received: %u-D Tensor,"
"the shape of Conv input is [%s]",
in_dims.size(), in_dims);
PADDLE_ENFORCE_EQ(
in_dims.size(), filter_dims.size(),
"Conv input dimension and filter dimension should be the same.");
PADDLE_ENFORCE_EQ(
in_dims.size() - strides.size() == 2U, true,
"Conv input dimension and strides dimension should be consistent.");
"ShapeError: Conv input dimension and filter dimension should be the "
"equal."
"But received: the shape of Conv input is [%s], input dimension of Conv "
"input is [%d],"
"the shape of filter is [%s], the filter dimension of Conv is [%d]",
in_dims, in_dims.size(), filter_dims, filter_dims.size());
int in_sub_stride_size = in_dims.size() - strides.size();
PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true,
"ShapeError: the dimension of input minus the dimension of "
"stride must be euqal to 2."
"But received: the dimension of input minus the dimension "
"of stride is [%d], the"
"input dimension of Conv is [%d], the shape of Conv input "
"is [%s], the stride"
"dimension of Conv is [%d]",
in_sub_stride_size, in_dims.size(), in_dims,
strides.size());
const auto input_channels =
channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
PADDLE_ENFORCE_EQ(
input_channels, filter_dims[1] * groups,
"ShapeError: The number of input channels should be equal to filter "
"channels * groups. But received: the input channels is [%d], the shape"
"of input is [%s], the filter channel is [%d], the shape of filter is "
"[%s],"
"the groups is [%d]",
in_dims[1], in_dims, filter_dims[1], filter_dims, groups);
PADDLE_ENFORCE_EQ(
filter_dims[0] % groups, 0,
"The number of output channels should be divided by groups.");
"ShapeError: The number of output channels should be divided by groups."
"But received: the output channels is [%d], the shape of filter is [%s]"
"(the first dimension of filter is output channel), the groups is [%d]",
filter_dims[0], filter_dims, groups);
framework::DDim in_data_dims;
if (channel_last) {
......
......@@ -41,30 +41,56 @@ class CrossEntropyOpBase : public framework::OperatorWithKernel {
bool check = ctx->IsRuntime() || !contain_unknown_dim;
if (check) {
PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension.");
PADDLE_ENFORCE_EQ(
framework::slice_ddim(x_dims, 0, rank - 1),
framework::slice_ddim(label_dims, 0, rank - 1),
"ShapeError: Input(X) and Input(Label) shall have the same shape "
"except the last dimension. But received: the shape of Input(X) is "
"[%s],"
"the shape of Input(Label) is [%s].",
x_dims, label_dims);
}
if (IsSoftLabel(ctx)) {
PADDLE_ENFORCE_EQ(
rank, label_dims.size(),
"If Attr(soft_label) == true, Input(X) and Input(Label) "
"shall have the same rank.");
"ShapeError: If Attr(soft_label) == true, Input(X) and Input(Label) "
"shall have the same dimensions. But received: the dimensions of "
"Input(X) is [%d],"
"the shape of Input(X) is [%s], the dimensions of Input(Label) is "
"[%d], the shape of"
"Input(Label) is [%s]",
rank, x_dims, label_dims.size(), label_dims);
if (check) {
PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
"If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal.");
PADDLE_ENFORCE_EQ(
x_dims[rank - 1], label_dims[rank - 1],
"ShapeError: If Attr(soft_label) == true, the last dimension of "
"Input(X) and Input(Label) should be equal. But received: the"
"last dimension of Input(X) is [%d], the shape of Input(X) is [%s],"
"the last dimension of Input(Label) is [%d], the shape of "
"Input(Label)"
"is [%s], the last dimension is [%d].",
x_dims[rank - 1], x_dims, label_dims[rank - 1], label_dims,
rank - 1);
}
} else {
if (rank == label_dims.size()) {
PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
"the last dimension of Input(Label) should be 1.");
} else {
PADDLE_ENFORCE_EQ(
rank, label_dims.size() + 1,
"The rank of Input(X) should be equal to Input(Label) plus 1.");
label_dims[rank - 1], 1UL,
"ShapeError: the last dimension of Input(Label) should be 1."
"But received: the last dimension of Input(Label) is [%d],"
"the last dimension is [%d]",
label_dims[rank - 1], rank - 1);
} else {
PADDLE_ENFORCE_EQ(rank, label_dims.size() + 1,
"ShapeError: The rank of Input(X) should be equal to "
"Input(Label) plus 1."
"But received: The dimension of Input(X) is [%d], "
"the shape of Input(X) is [%s],"
"the dimension of Input(Label) is [%d], the shape of "
"Input(Label) is [%s]",
rank, x_dims, label_dims.size(), label_dims);
}
}
......
......@@ -1677,6 +1677,20 @@ def dropout(x,
"""
helper = LayerHelper('dropout', **locals())
if not isinstance(x, Variable):
raise TypeError(
"The type of 'input' in dropout must be Variable, but received %s" %
(type(x)))
if convert_dtype(x.dtype) in ['float16']:
warnings.warn(
"The data type of 'input' in dropout only support float16 on GPU now."
)
if convert_dtype(x.dtype) not in ['float16', 'float32', 'float64']:
raise TypeError(
"The data type of 'input' in dropout must be float16 or float32 or float64, but received %s."
% (convert_dtype(x.dtype)))
out = helper.create_variable_for_type_inference(dtype=x.dtype)
mask = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
......@@ -1749,6 +1763,19 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
predict = fluid.layers.fc(input=x, size=class_num, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
"""
if not isinstance(input, Variable):
raise TypeError(
"The type of 'input' in cross_entropy must be Variable, but received %s"
% (type(input)))
if convert_dtype(input.dtype) in ['float16']:
warnings.warn(
"The data type of 'input' in cross_entropy only support float16 on GPU now."
)
if convert_dtype(input.dtype) not in ['float16', 'float32', 'float64']:
raise TypeError(
"The data type of 'input' in cross_entropy must be float16 or float32 or float64, but received %s."
% (convert_dtype(input.dtype)))
if not soft_label:
return cross_entropy2(input, label, ignore_index)
helper = LayerHelper('cross_entropy', **locals())
......@@ -2397,6 +2424,20 @@ def conv2d(input,
conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
"""
if not isinstance(input, Variable):
raise TypeError(
"The type of 'input' in conv2d must be Variable, but received %s" %
(type(input)))
if convert_dtype(input.dtype) in ['float16']:
warnings.warn(
"The data type of 'input' in conv2d only support float16 on GPU now."
)
if convert_dtype(input.dtype) not in ['float16', 'float32', 'float64']:
raise TypeError(
"The data type of 'input' in conv2d must be float16 or float32 or float64, but received %s."
% (convert_dtype(input.dtype)))
num_channels = input.shape[1]
if not isinstance(use_cudnn, bool):
raise ValueError("Attr(use_cudnn) should be True or False. Received "
"Attr(use_cudnn): %s. " % str(use_cudnn))
......@@ -2427,9 +2468,9 @@ def conv2d(input,
else:
if num_channels % groups != 0:
raise ValueError(
"The number of input channels must be divisible by Attr(groups). "
"Received: number of channels(%s), groups(%s)." %
(str(num_channels), str(groups)))
"the channel of input must be divisible by groups,"
"received: the channel of input is {}, the shape of input is {}"
", the groups is {}".format(num_channels, input.shape, groups))
num_filter_channels = num_channels // groups
filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
......@@ -3740,8 +3781,21 @@ def batch_norm(input,
"""
assert bias_attr is not False, "bias_attr should not be False in batch_norm."
helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype()
if not isinstance(input, Variable):
raise TypeError(
"The type of 'input' in batch_norm must be Variable, but received %s"
% (type(input)))
if convert_dtype(input.dtype) in ['float16']:
warnings.warn(
"The data type of 'input' in batch_norm only support float16 on GPU now."
)
if convert_dtype(input.dtype) not in ['float16', 'float32', 'float64']:
raise TypeError(
"The data type of 'input' in batch_norm must be float16 or float32 or float64, but received %s."
% (convert_dtype(input.dtype)))
dtype = helper.input_dtype()
# use fp32 for bn parameter
if dtype == core.VarDesc.VarType.FP16:
dtype = core.VarDesc.VarType.FP32
......
......@@ -21,6 +21,8 @@ from paddle.fluid.op import Operator
import paddle.fluid as fluid
from op_test import OpTest
from paddle.fluid.framework import grad_var_name
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
def _reference_testing(x, scale, offset, mean, var, epsilon, data_format):
......@@ -530,5 +532,19 @@ class TestBatchNormOpFreezeStatsAndScaleBiasTraining(
self.fetch_list = ['y', 'mean', 'variance', 'x@GRAD']
class TestBatchNormOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
# the input of batch_norm must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
self.assertRaises(TypeError, fluid.layers.batch_norm, x1)
# the input dtype of batch_norm must be float16 or float32 or float64
# float16 only can be set on GPU place
x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="int32")
self.assertRaises(TypeError, fluid.layers.batch_norm, x2)
if __name__ == '__main__':
unittest.main()
......@@ -18,8 +18,9 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from op_test import OpTest
from paddle.fluid import Program, program_guard
def conv2d_forward_naive(input,
......@@ -647,6 +648,28 @@ class TestCUDNNExhaustiveSearch(TestConv2dOp):
self.exhaustive_search = True
class TestConv2dOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input of conv2d must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
fluid.layers.conv2d(x1, 1, 1)
self.assertRaises(TypeError, test_Variable)
def test_dtype():
# the input dtype of conv2d must be float16 or float32 or float64
# float16 only can be set on GPU place
x2 = fluid.layers.data(
name='x2', shape=[3, 4, 5, 6], dtype="int32")
fluid.layers.conv2d(x2, 1, 1)
self.assertRaises(TypeError, test_dtype)
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
# class TestCUDNNWithDilation(TestWithDilation):
......
......@@ -18,6 +18,8 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest, randomize_probability
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestCrossEntropyOp(OpTest):
......@@ -356,5 +358,32 @@ create_test_class(TestCrossEntropyOp7, "TestCrossEntropyF16Op7")
create_test_class(TestCrossEntropyOp7RemoveLastDim,
"TestCrossEntropyF16Op7RemoveLastDim")
class TestCrossEntropyOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input of cross_entropy must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
lab1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
fluid.layers.cross_entropy(x1, lab1)
self.assertRaises(TypeError, test_Variable)
def test_dtype():
# the input dtype of cross_entropy must be float16 or float32 or float64
# float16 only can be set on GPU place
x2 = fluid.layers.data(
name='x2', shape=[3, 4, 5, 6], dtype="int32")
lab2 = fluid.layers.data(
name='lab2', shape=[3, 4, 5, 6], dtype="int32")
fluid.layers.cross_entropy(x2, lab2)
self.assertRaises(TypeError, test_dtype)
if __name__ == "__main__":
unittest.main()
......@@ -18,6 +18,8 @@ import unittest
import numpy as np
import paddle.fluid.core as core
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
class TestDropoutOp(OpTest):
......@@ -180,5 +182,27 @@ class TestFP16DropoutOp2(TestFP16DropoutOp):
self.fix_seed = False
class TestDropoutOpError(OpTest):
def test_errors(self):
with program_guard(Program(), Program()):
def test_Variable():
# the input of dropout must be Variable.
x1 = fluid.create_lod_tensor(
np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
fluid.layers.dropout(x1, dropout_prob=0.5)
self.assertRaises(TypeError, test_Variable)
def test_dtype():
# the input dtype of dropout must be float16 or float32 or float64
# float16 only can be set on GPU place
x2 = fluid.layers.data(
name='x2', shape=[3, 4, 5, 6], dtype="int32")
fluid.layers.dropout(x2, dropout_prob=0.5)
self.assertRaises(TypeError, test_dtype)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册