gather_op.cu 5.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

15
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/eigen.h"
17
#include "paddle/fluid/operators/gather.cu.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/gather_op.h"
19
#include "paddle/fluid/operators/scatter.cu.h"
Z
zchen0211 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

template <typename T>
Z
zchen0211 已提交
25
class GatherOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
26 27
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
28 29 30
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
Z
zchen0211 已提交
31 32 33 34
    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

35 36 37
    int axis = ctx.Attr<int>("axis");

    // get axis from tensor
38
    if (ctx.HasInput("Axis")) {
39 40 41
      Tensor cpu_axis;
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
42 43
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
44 45 46 47
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
48
      }
49 50
    }
    const auto &place = ctx.GetPlace();
51
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
52 53 54 55 56
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
        GatherV2CUDAFunction<T, int32_t>(x, index, axis, output, place, ctx);
      } else if (index_type == framework::proto::VarType::INT64) {
        GatherV2CUDAFunction<T, int64_t>(x, index, axis, output, place, ctx);
57 58 59
      }
      return;
    }
60

Z
zchen0211 已提交
61
    output->mutable_data<T>(ctx.GetPlace());
62
    if (x->numel() == 0) return;
63 64 65 66 67
    if (index_type == framework::proto::VarType::INT32) {
      GPUGather<T, int>(ctx.device_context(), *x, *index, output);
    } else if (index_type == framework::proto::VarType::INT64) {
      GPUGather<T, int64_t>(ctx.device_context(), *x, *index, output);
    }
Z
zchen0211 已提交
68 69 70 71
  }
};

template <typename T>
Z
zchen0211 已提交
72
class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
73 74
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
75 76 77
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
78
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
79 80 81
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));

82
    int axis = ctx.Attr<int>("axis");
83
    if (ctx.HasInput("Axis")) {
84 85 86
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      Tensor cpu_axis;
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
87 88
      const auto &axis_type =
          framework::TransToProtoVarType(axis_tensor->dtype());
89 90 91 92
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
93
      }
94 95
    }

96
    const auto &index_type = framework::TransToProtoVarType(index->dtype());
97 98 99 100 101 102 103
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
        GatherV2GradCUDAFunction<T, int32_t>(dO, index, axis, dX,
                                             ctx.GetPlace(), ctx);
      } else if (index_type == framework::proto::VarType::INT64) {
        GatherV2GradCUDAFunction<T, int64_t>(dO, index, axis, dX,
                                             ctx.GetPlace(), ctx);
104 105 106 107
      }
      return;
    }

Z
zchen0211 已提交
108 109
    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
110 111
    auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
112
    dxt.device(place) = dxt.constant(static_cast<T>(0));
113
    if (dO->numel() == 0) return;
114
    if (index_type == framework::proto::VarType::INT32) {
115 116
      GPUScatterAssign<T, int>(ctx, *dO, *index, dX,
                               ctx.Attr<bool>("overwrite"));
117
    } else if (index_type == framework::proto::VarType::INT64) {
118 119
      GPUScatterAssign<T, int64_t>(ctx, *dO, *index, dX,
                                   ctx.Attr<bool>("overwrite"));
120
    }
Z
zchen0211 已提交
121 122 123 124 125 126 127
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
128
namespace plat = paddle::platform;
129 130 131
REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel<float>,
                        ops::GatherOpCUDAKernel<double>,
                        ops::GatherOpCUDAKernel<int64_t>,
132
                        ops::GatherOpCUDAKernel<int>,
133 134
                        ops::GatherOpCUDAKernel<plat::float16>,
                        ops::GatherOpCUDAKernel<plat::bfloat16>);
135 136 137
REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel<float>,
                        ops::GatherGradOpCUDAKernel<double>,
                        ops::GatherGradOpCUDAKernel<int64_t>,
138
                        ops::GatherGradOpCUDAKernel<int>,
139 140
                        ops::GatherGradOpCUDAKernel<plat::float16>,
                        ops::GatherGradOpCUDAKernel<plat::bfloat16>);