gather_op.cu 7.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/eigen.h"
16
#include "paddle/fluid/operators/gather.cu.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/gather_op.h"
18
#include "paddle/fluid/operators/scatter.cu.h"
Z
zchen0211 已提交
19 20 21 22 23

namespace paddle {
namespace operators {

template <typename T>
Z
zchen0211 已提交
24
class GatherOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
25 26
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
27 28 29
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
Z
zchen0211 已提交
30 31 32 33
    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    if (ctx.HasInput("Axis")) {
      const Tensor *axis = ctx.Input<Tensor>("Axis");
      const auto &index_type = index->type();
      const auto &axis_type = axis->type();
      auto place = ctx.GetPlace();
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2CUDAFunction<T, int32_t, int32_t>(x, index, axis, output, place,
                                                  ctx);
      }
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2CUDAFunction<T, int32_t, int64_t>(x, index, axis, output, place,
                                                  ctx);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2CUDAFunction<T, int64_t, int32_t>(x, index, axis, output, place,
                                                  ctx);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2CUDAFunction<T, int64_t, int64_t>(x, index, axis, output, place,
                                                  ctx);
      }
      return;
    }
Z
zchen0211 已提交
61
    output->mutable_data<T>(ctx.GetPlace());
62
    if (x->numel() == 0) return;
63 64 65
    const auto &index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
66 67 68 69 70 71 72 73 74
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Index holds the wrong type, it holds [%s],"
                          "but desires to be [%s] or [%s].",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
75 76 77 78 79
    if (index_type == framework::proto::VarType::INT32) {
      GPUGather<T, int>(ctx.device_context(), *x, *index, output);
    } else if (index_type == framework::proto::VarType::INT64) {
      GPUGather<T, int64_t>(ctx.device_context(), *x, *index, output);
    }
Z
zchen0211 已提交
80 81 82 83
  }
};

template <typename T>
Z
zchen0211 已提交
84
class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
85 86
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
87 88 89
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
90
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
91 92 93
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    if (ctx.HasInput("Axis")) {
      const Tensor *axis = ctx.Input<Tensor>("Axis");
      const auto &index_type = index->type();
      const auto &axis_type = axis->type();
      auto place = ctx.GetPlace();
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2GradCUDAFunction<T, int32_t, int32_t>(dO, index, axis, dX,
                                                      place, ctx);
      }
      if (index_type == framework::proto::VarType::INT32 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2GradCUDAFunction<T, int32_t, int64_t>(dO, index, axis, dX,
                                                      place, ctx);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT32) {
        GatherV2GradCUDAFunction<T, int64_t, int32_t>(dO, index, axis, dX,
                                                      place, ctx);
      }
      if (index_type == framework::proto::VarType::INT64 &&
          axis_type == framework::proto::VarType::INT64) {
        GatherV2GradCUDAFunction<T, int64_t, int64_t>(dO, index, axis, dX,
                                                      place, ctx);
      }
      return;
    }

Z
zchen0211 已提交
122 123
    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
124 125
    auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
126
    dxt.device(place) = dxt.constant(static_cast<T>(0));
127
    if (dO->numel() == 0) return;
128 129 130 131

    const auto &index_type = index->type();
    bool index_type_match = index_type == framework::proto::VarType::INT32 ||
                            index_type == framework::proto::VarType::INT64;
132 133 134 135 136 137 138 139 140
    PADDLE_ENFORCE_EQ(index_type_match, true,
                      platform::errors::InvalidArgument(
                          "Index holds the wrong type, it holds [%s],"
                          "but desires to be [%s] or [%s].",
                          paddle::framework::DataTypeToString(index_type),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT32),
                          paddle::framework::DataTypeToString(
                              framework::proto::VarType::INT64)));
141
    if (index_type == framework::proto::VarType::INT32) {
142 143
      GPUScatterAssign<T, int>(ctx, *dO, *index, dX,
                               ctx.Attr<bool>("overwrite"));
144
    } else if (index_type == framework::proto::VarType::INT64) {
145 146
      GPUScatterAssign<T, int64_t>(ctx, *dO, *index, dX,
                                   ctx.Attr<bool>("overwrite"));
147
    }
Z
zchen0211 已提交
148 149 150 151 152 153 154
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
155
namespace plat = paddle::platform;
156 157 158
REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel<float>,
                        ops::GatherOpCUDAKernel<double>,
                        ops::GatherOpCUDAKernel<int64_t>,
159 160
                        ops::GatherOpCUDAKernel<int>,
                        ops::GatherOpCUDAKernel<plat::float16>);
161 162 163
REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel<float>,
                        ops::GatherGradOpCUDAKernel<double>,
                        ops::GatherGradOpCUDAKernel<int64_t>,
164 165
                        ops::GatherGradOpCUDAKernel<int>,
                        ops::GatherGradOpCUDAKernel<plat::float16>);