gather_op.cu 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zchen0211 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Z
zchen0211 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Z
zchen0211 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zchen0211 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/framework/eigen.h"
16
#include "paddle/fluid/operators/gather.cu.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/gather_op.h"
18
#include "paddle/fluid/operators/scatter.cu.h"
Z
zchen0211 已提交
19 20 21 22 23

namespace paddle {
namespace operators {

template <typename T>
Z
zchen0211 已提交
24
class GatherOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
25 26
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
27 28 29
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
Z
zchen0211 已提交
30 31 32 33
    auto *x = ctx.Input<Tensor>("X");
    auto *index = ctx.Input<Tensor>("Index");
    auto *output = ctx.Output<Tensor>("Out");

34 35 36
    int axis = ctx.Attr<int>("axis");

    // get axis from tensor
37
    if (ctx.HasInput("Axis")) {
38 39 40 41 42 43 44 45
      Tensor cpu_axis;
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
      const auto &axis_type = axis_tensor->type();
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
46
      }
47 48 49 50 51 52 53 54
    }
    const auto &place = ctx.GetPlace();
    const auto &index_type = index->type();
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
        GatherV2CUDAFunction<T, int32_t>(x, index, axis, output, place, ctx);
      } else if (index_type == framework::proto::VarType::INT64) {
        GatherV2CUDAFunction<T, int64_t>(x, index, axis, output, place, ctx);
55 56 57
      }
      return;
    }
58

Z
zchen0211 已提交
59
    output->mutable_data<T>(ctx.GetPlace());
60
    if (x->numel() == 0) return;
61 62 63 64 65
    if (index_type == framework::proto::VarType::INT32) {
      GPUGather<T, int>(ctx.device_context(), *x, *index, output);
    } else if (index_type == framework::proto::VarType::INT64) {
      GPUGather<T, int64_t>(ctx.device_context(), *x, *index, output);
    }
Z
zchen0211 已提交
66 67 68 69
  }
};

template <typename T>
Z
zchen0211 已提交
70
class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
Z
zchen0211 已提交
71 72
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
73 74 75
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::PreconditionNotMet(
                          "This kernel only runs on GPU device."));
76
    auto *index = ctx.Input<Tensor>("Index");
Z
zchen0211 已提交
77 78 79
    auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));

80
    int axis = ctx.Attr<int>("axis");
81
    if (ctx.HasInput("Axis")) {
82 83 84 85 86 87 88 89
      const Tensor *axis_tensor = ctx.Input<Tensor>("Axis");
      Tensor cpu_axis;
      framework::TensorCopy(*axis_tensor, platform::CPUPlace(), &cpu_axis);
      const auto &axis_type = axis_tensor->type();
      if (axis_type == framework::proto::VarType::INT32) {
        axis = static_cast<int>(cpu_axis.data<int32_t>()[0]);
      } else if (axis_type == framework::proto::VarType::INT64) {
        axis = static_cast<int>(cpu_axis.data<int64_t>()[0]);
90
      }
91 92 93 94 95 96 97 98 99 100
    }

    const auto &index_type = index->type();
    if (axis != 0) {
      if (index_type == framework::proto::VarType::INT32) {
        GatherV2GradCUDAFunction<T, int32_t>(dO, index, axis, dX,
                                             ctx.GetPlace(), ctx);
      } else if (index_type == framework::proto::VarType::INT64) {
        GatherV2GradCUDAFunction<T, int64_t>(dO, index, axis, dX,
                                             ctx.GetPlace(), ctx);
101 102 103 104
      }
      return;
    }

Z
zchen0211 已提交
105 106
    dX->mutable_data<T>(ctx.GetPlace());
    auto dxt = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
107 108
    auto &place = *ctx.template device_context<platform::CUDADeviceContext>()
                       .eigen_device();
Z
zchen0211 已提交
109
    dxt.device(place) = dxt.constant(static_cast<T>(0));
110
    if (dO->numel() == 0) return;
111
    if (index_type == framework::proto::VarType::INT32) {
112 113
      GPUScatterAssign<T, int>(ctx, *dO, *index, dX,
                               ctx.Attr<bool>("overwrite"));
114
    } else if (index_type == framework::proto::VarType::INT64) {
115 116
      GPUScatterAssign<T, int64_t>(ctx, *dO, *index, dX,
                                   ctx.Attr<bool>("overwrite"));
117
    }
Z
zchen0211 已提交
118 119 120 121 122 123 124
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
125
namespace plat = paddle::platform;
126 127 128
REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel<float>,
                        ops::GatherOpCUDAKernel<double>,
                        ops::GatherOpCUDAKernel<int64_t>,
129 130
                        ops::GatherOpCUDAKernel<int>,
                        ops::GatherOpCUDAKernel<plat::float16>);
131 132 133
REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel<float>,
                        ops::GatherGradOpCUDAKernel<double>,
                        ops::GatherGradOpCUDAKernel<int64_t>,
134 135
                        ops::GatherGradOpCUDAKernel<int>,
                        ops::GatherGradOpCUDAKernel<plat::float16>);